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Centralized Feedstocks

Emerging Distributed Feedstocks
e.g. biogas, syngas, biosolids, 
food waste, CO2 streams
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Process/Reactor Needs for Emerging 
Feedstocks:

• Efficient at small scales 
• e.g. modular reactors: surface area 

dependent (gas phase reactants, electron 
transfer)

• Low Capital Investment
• Mild operating conditions, high process 

intensity, reduced downstream processing
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Technical Innovations for Bioprocess 
Intensification:

• Higher Intensity: Minimize volume/carbon 
devoted to metabolism (Cell-free)

• Higher Stability: More Process Flexibility

• Advanced Materials to Enhance Cell-Free 
Processes and Mass Transfer
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UT Bornscheuer et al. Nature 485, 185-194 (2012)

“3rd Wave” of Biocatalysis: Smaller, 
Smarter Libraries, Rational Design
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Example: Directed Evolution of Carbonic 
Anhydrase 

Oscar Alvizo et al. PNAS 2014;111:16436-16441
The Stability of Carbonic Anhydrase was Improved ~5 Million Fold 

Oscar Alvizo et al. PNAS 2014;111:16436-16441
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Biology uses materials to make enzymes 
work better:
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Embedding Enzymes in Functional Materials
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We can now mimic biology’s design 
strategies using advanced manufacturing
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1st Gen: immobilization

2nd Gen: stabilization

How Can Materials Meet the Potential of 
Engineered Enzymes?

Enzyme re-use

3rd Gen: directed 
assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Re-use + extended lifetime/
Organic solvents

use + extended lifetime/

Adsorption, crosslinking

Encapsulation (sol gel, mesoporous)

Enzyme embedded materials with 
tunable architectures
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Efficient GTL process for small and remote methane 
streams Needed: Suggests Biological Process

Mass Transfer Example: Cell-Free methane 
conversion

*Fei, Q., et. al., 2014. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnology Advances 32, 596–614. 1.; Haynes, C. A. & 
Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nature Chemical Biology 10, 331–339 (2014).
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Approach: Printed Bioreactor

Why would we want to do that? 
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The stirred-tank reactor is slow and inefficient 
for gas phase reactants (e.g. CH4, O2, CO, H2, 
CO2) 

• Poor Mass Transfer

• Low Volumetric Productivity
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Haynes and Gonzalez, Nature Chemical Biology  10, 331–339 2014

New Bioreactor Technology Needed
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CH4 O2CH4 O2

CH4+O2+2H+ + 2e- CH3OH + H2OpMMO

methanotroph pMMO enzymepMMO enzyme

Printed pMMO Bioreactor to Intensify the 
Process
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Zheng et al., Science  344 
(6190): 1373-1377 (2014) 

Direct printing of pMMO: control of surface 
area
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Printed pMMO: increased protein 
concentration and activity

Printed pMMO

Physiological  activity of pMMO achieved in a printed material

Physiological pMMO activity

Blanchette, C. D. et al. Nature Communications 7, 11900 (2016).
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Printed pMMO: ARPA-e REMOTE targets 
reached

Printed pMMO

Corresponds to >2g MeOH/L/hr
(with unoptimized structures) 

Haynes and Gonzalez. Rethinking biological activation of methane and 
conversion to liquid fuels. Nature Chemical Biology 10, 331–339 (2014).
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Printed pMMO membranes enabled 
continuous methanol production at gas- liquid 
interface 

• Thin pMMO lattice  higher activity

• Membrane is Progress, But Can We Do Better?

“Thin” “Thick”“Thin” “Thick”

higher activity
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Potential Reactor Design: “Printed Tube 
Reactor”
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Printed Tube Reactor: Surface Area Created 
By Structure & Independent of Pressure Drop

liquid

gas
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Haynes and Gonzalez, Nature Chemical Biology  10, 331–339 2014

Printed tube reactor: High mass transfer rate
+ energy efficiency 
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Gyroid reactors: only possible with additive 
manufacturing

Polymer Gyroid Reactor (LLNL) Stainless Steel Gyroid Reactor (LLNL)
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Heat transfer per unit surface area

Order-of-magnitude improvement in heat 
transfer performance over tubes and flat 
plates.

T. Femmer et al. Chemical Engineering Journal 273 (2015) 438–445.
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Possible Reactor Configurations
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Microencapsulation: Regeneration, Flexible 
Reactor Configurations, Relevant Length 
Scales

Lyophilized encapsulated whole M. capsulatus catalytically active for propylene oxidation

Lyophilized

Encapsulated

Lyophilized encapsulated whole Lyophilized encapsulated whole M. M. capsulatuscapsulatus

Lyophilized

EncapsulatedEncapsulated

encapsulated M. capsulatus proteome

Cells Provided By Calysta
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H2O
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Microbial Electrosynthesis: Reactor 
Productivity Depends on Current Density 
(Amps/m2)

Current Density Requires High Accessible Electrode Surface Area  



Lawrence Livermore National Laboratory
33Logan, B. et al. Environ. Sci. Technol. Lett., 2015, 2 (8), pp 206–214

Standard Electrode Materials Difficult to Scale 
while Maintaining Surface Area 
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50 µm

Spormann, A. M. et al. Extracellular Enzymes Facilitate Electron Uptake 
in Biocorrosion and Bioelectrosynthesis. mBio 6, e00496–15 (2015).

Opportunity: Printed aerogels have 
hierarchical, scalable surface area; Enzymes 
can be used for charge transfer

Small pores for enzyme 
absorption for electron 
transfer 

Larger pores for whole 
microbes and/or nutrient 
transfer/mixing
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to methanogenesis module 
e-

O2

enzymes adsorbed to
printed aerogel

3D printed ME cell 

H+

e-

b
io

fi
lm

CO2

CH4

Standard ME cell

Unique Cell Designs are Available Which 
Increase Current Density and Decrease 
Diffusion Distances
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Research Needs:

• Economics, Modeling & Scaling: What is the 
price of the surface area?

• Highly Stable Enzymes (months of 
operation)

• Reducing Equivalents/Cofactors 
(Elimination/recycling/cheaper alternatives)

• Deep understanding of enzyme kinetics and 
material permeability
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Unprecedented Control in Enzyme 
Engineering and Materials Synthesis 
Rational Design of Biocatalytic Materials and 
Reactors

• Small Scale, Modular, Higher Process 
Intensity
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