Bioprocess Intensification at the Intersection of Biology and Advanced Manufacturing

Sarah Baker, Jennifer Knipe, James Oakdale, Joshua DeOtte, Joshuah Stolaroff **(LLNL)**

Collaborators: Prof. Amy Rosenzweig **(Northwestern);** Prof. Alfred Spormann **(Stanford)**

BETO Listening Day July 30, 2017

Lawrence Livermore National Laboratory **1988 Prepared by LLNL under Contract DE-AC52-07NA27344**

Centralized Feedstocks

Emerging Distributed Feedstocks e.g. biogas, syngas, biosolids, food waste, CO₂ streams

Process/Reactor Needs for Emerging Feedstocks:

• **Efficient at small scales**

• **e.g. modular reactors: surface area dependent (gas phase reactants, electron transfer)**

• **Low Capital Investment**

• **Mild operating conditions, high process intensity, reduced downstream processing**

Technical Innovations for Bioprocess Intensification:

- **Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)**
- **Higher Stability: More Process Flexibility**
- **Advanced Materials to Enhance Cell-Free Processes and Mass Transfer**

Technical Innovations for Bioprocess Intensification:

- **Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)**
- **Higher Stability: More Process Flexibility**
- **Advanced Materials to Enhance Cell-Free Processes and Mass Transfer**

"3rd Wave" of Biocatalysis: Smaller, Smarter Libraries, Rational Design

UT Bornscheuer *et al. Nature* **485**, 185-194 (2012)

Example: Directed Evolution of Carbonic Anhydrase

Oscar Alvizo et al. PNAS 2014;111:16436-16441

The Stability of Carbonic Anhydrase was Improved ~5 Million Fold

Technical Innovations for Bioprocess Intensification:

- **Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)**
- **Higher Stability: More Process Flexibility**
- **Advanced Materials to Enhance Cell-Free Processes and Mass Transfer**

Biology uses materials to make enzymes work better:

Embedding Enzymes in Functional Materials

We can now mimic biology's design strategies using advanced manufacturing

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

2nd Gen: stabilization

Adsorption, crosslinking
Re-use + extended lifetime/
Adsorption, crosslinking Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

2nd Gen: stabilization

Adsorption, crosslinking
Re-use + extended lifetime/
Adsorption, crosslinking Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Mass Transfer Example: Cell-Free methane conversion

Efficient GTL process for small and remote methane streams Needed: Suggests Biological Process

*Fei, Q., et. al., 2014. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. *Biotechnology Advances* 32, 596–614. 1.; Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. *Nature Chemical Biology* **10,** 331–339 (2014).

Approach: Printed Bioreactor

Why would we want to do that?

Lawrence Livermore National Laboratory ¹⁵

The stirred-tank reactor is slow and inefficient for gas phase reactants (e.g. CH₄, O₂, CO, H₂, CO₂)

• Poor Mass Transfer

• Low Volumetric Productivity

New Bioreactor Technology Needed

Haynes and Gonzalez*, Nature Chemical Biology* 10, 331–339 2014

Printed pMMO Bioreactor to Intensify the Process

Direct printing of pMMO: control of surface area

Zheng *et al.,* Science 344 (6190): 1373-1377 (2014)

Printed pMMO: increased protein concentration and activity

Physiological activity of pMMO achieved in a printed material

Printed pMMO: ARPA-e REMOTE targets reached

Corresponds to >2g MeOH/L/hr (with unoptimized structures)

Haynes and Gonzalez. Rethinking biological activation of methane and all end-
Chemical Biology 10 331–339 (2014) 2014) conversion to liquid fuels Nature Chemical Biology 10 331–339 (2014) conversion to liquid fuels. *Nature Chemical Biology* **10,** 331–339 (2014).

Printed pMMO membranes enabled continuous methanol production at gas- liquid interface

- Thin pMMO lattice \rightarrow higher activity
- **Membrane is Progress, But Can We Do Better?**

Lawrence Livermore National Laboratory ²²

Potential Reactor Design: "Printed Tube Reactor"

Printed Tube Reactor: Surface Area Created By Structure & Independent of Pressure Drop

Lawrence Livermore National Laboratory ²⁴

Printed tube reactor: High mass transfer rate + energy efficiency

Haynes and Gonzalez*, Nature Chemical Biology* 10, 331–339 2014

Lawrence Livermore National Laboratory ²⁵

Gyroid reactors: only possible with additive manufacturing

Polymer Gyroid Reactor (LLNL) Stainless Steel Gyroid Reactor (LLNL)

Order-of-magnitude improvement in heat transfer performance over tubes and flat plates.

T. Femmer et al. *Chemical Engineering Journal* 273 (2015) 438–445.

Possible Reactor Configurations

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

2nd Gen: stabilization

Adsorption, crosslinking
Re-use + extended lifetime/
Adsorption, crosslinking Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Microencapsulation: Regeneration, Flexible Reactor Configurations, Relevant Length Scales

Lyophilized encapsulated whole *M. capsulatus* catalytically active for propylene oxidation Lyophilized encapsulated whole *M. capsulatus*

Lawrence Livermore National Laboratory **Cells Provided By Calysta Cancel 20 12 130**

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

2nd Gen: stabilization

Adsorption, crosslinking
Re-use + extended lifetime/
Adsorption, crosslinking Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Microbial Electrosynthesis: Reactor Productivity Depends on Current Density (Amps/m2)

Standard ME cell

Current Density Requires High Accessible Electrode Surface Area

Lawrence Livermore National Laboratory Logan, B. et al. Environ. Sci. Technol. Lett., 2015, 2 (8), pp 206–214 ³²

Standard Electrode Materials Difficult to Scale while Maintaining Surface Area

Opportunity: Printed aerogels have hierarchical, scalable surface area; Enzymes can be used for charge transfer

Small pores for enzyme absorption for electron transfer

> Larger pores for whole microbes and/or nutrient transfer/mixing

Lawrence Livermore National Laboratory in Biocorrosion and Bioelectrosynthesis. *mBio* **6,** e00496–15 (2015). Spormann, A. M. et al. Extracellular Enzymes Facilitate Electron Uptake

Unique Cell Designs are Available Which Increase Current Density and Decrease Diffusion Distances

3D printed ME cell

Research Needs:

- **Economics, Modeling & Scaling: What is the price of the surface area?**
- **Highly Stable Enzymes (months of operation)**
- **Reducing Equivalents/Cofactors (Elimination/recycling/cheaper alternatives)**
- **Deep understanding of enzyme kinetics and material permeability**

Unprecedented Control in Enzyme Engineering and Materials Synthesis Rational Design of Biocatalytic Materials and Reactors

• **Small Scale, Modular, Higher Process Intensity**

Lawrence Livermore National Laboratory ³⁸

