Bioprocess Intensification at the Intersection of Biology and Advanced Manufacturing

Sarah Baker, Jennifer Knipe, James Oakdale, Joshua DeOtte, Joshuah Stolaroff (LLNL)

Collaborators: Prof. Amy Rosenzweig (Northwestern); Prof. Alfred Spormann (Stanford)

BETO Listening Day July 30, 2017

Lawrence Livermore National Laboratory

Prepared by LLNL under Contract DE-AC52-07NA27344

Centralized Feedstocks

Emerging Distributed Feedstocks e.g. biogas, syngas, biosolids, food waste, CO₂ streams

Process/Reactor Needs for Emerging Feedstocks:

Efficient at small scales

e.g. modular reactors: surface area dependent (gas phase reactants, electron transfer)

Low Capital Investment

 Mild operating conditions, high process intensity, reduced downstream processing

Technical Innovations for Bioprocess Intensification:

- Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)
- Higher Stability: More Process Flexibility
- Advanced Materials to Enhance Cell-Free Processes and Mass Transfer

Technical Innovations for Bioprocess Intensification:

- Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)
- Higher Stability: More Process Flexibility
- Advanced Materials to Enhance Cell-Free Processes and Mass Transfer

"3rd Wave" of Biocatalysis: Smaller, Smarter Libraries, Rational Design

UT Bornscheuer et al. Nature 485, 185-194 (2012)

Example: Directed Evolution of Carbonic Anhydrase

Oscar Alvizo et al. PNAS 2014;111:16436-16441

The Stability of Carbonic Anhydrase was Improved ~5 Million Fold

Technical Innovations for Bioprocess Intensification:

- Higher Intensity: Minimize volume/carbon devoted to metabolism (Cell-free)
- Higher Stability: More Process Flexibility
- Advanced Materials to Enhance Cell-Free Processes and Mass Transfer

Biology uses materials to make enzymes work better:

Embedding Enzymes in Functional Materials

We can now mimic biology's design strategies using advanced manufacturing

Biology's Design Strategies	Biological Structures	Proposed Artificial Design Strategies	Proposed Synthetic Architectures	Function of Architectures
Enzyme-substrate co-localization	C	Functional copolymer network structures		Increase substrate concentration to increase catalytic rates
Cellular compart- ments with selective membrane barriers		Permeable polymer microcapsules embed- ded in bulk materials		Protect enzymes from competing reactions and prevent cofactor diffusion
Positioning enzymes at interfaces		Printing of enzyme- embedded material gradients	\bigcirc	Enable most efficient use of enzymes

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

Adsorption, crosslinking

2nd Gen: stabilization

Re-use + extended lifetime/ Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

Adsorption, crosslinking

2nd Gen: stabilization

Re-use + extended lifetime/ Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Mass Transfer Example: Cell-Free methane conversion

Efficient GTL process for small and remote methane streams Needed: Suggests Biological Process

*Fei, Q., et. al., 2014. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. *Biotechnology Advances* 32, 596–614. 1.; Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. *Nature Chemical Biology* **10**, 331–339 (2014).

Approach: Printed Bioreactor

Why would we want to do that?

Lawrence Livermore National Laboratory

The stirred-tank reactor is slow and inefficient for gas phase reactants (e.g. CH_4 , O_2 , CO, H_2 , CO_2)

• Poor Mass Transfer

Low Volumetric Productivity

New Bioreactor Technology Needed

Haynes and Gonzalez, Nature Chemical Biology 10, 331-339 2014

Printed pMMO Bioreactor to Intensify the Process

Direct printing of pMMO: control of surface area

Zheng *et al.*, Science 344 (6190): 1373-1377 (2014)

Printed pMMO: increased protein concentration and activity

Physiological activity of pMMO achieved in a printed material

20

Printed pMMO: ARPA-e REMOTE targets reached

Corresponds to >2g MeOH/L/hr (with unoptimized structures)

Lawrence Livermore National Laboratory

Haynes and Gonzalez. Rethinking biological activation of methane and₂₁ conversion to liquid fuels. *Nature Chemical Biology* **10**, 331–339 (2014).

Printed pMMO membranes enabled continuous methanol production at gas- liquid interface

- Thin pMMO lattice → higher activity
- Membrane is Progress, But Can We Do Better?

Lawrence Livermore National Laboratory

Potential Reactor Design: "Printed Tube Reactor"

Printed Tube Reactor: Surface Area Created By Structure & Independent of Pressure Drop

Lawrence Livermore National Laboratory

Printed tube reactor: High mass transfer rate + energy efficiency

Haynes and Gonzalez, Nature Chemical Biology 10, 331-339 2014

Lawrence Livermore National Laboratory

Gyroid reactors: only possible with additive manufacturing

Polymer Gyroid Reactor (LLNL)

Stainless Steel Gyroid Reactor (LLNL)

Order-of-magnitude improvement in heat transfer performance over tubes and flat plates.

T. Femmer et al. Chemical Engineering Journal 273 (2015) 438–445.

Possible Reactor Configurations

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

Adsorption, crosslinking

2nd Gen: stabilization

Re-use + extended lifetime/ Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly

Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Microencapsulation: Regeneration, Flexible Reactor Configurations, Relevant Length Scales

Lyophilized encapsulated whole *M. capsulatus* catalytically active for propylene oxidation

Cells Provided By Calysta

How Can Materials Meet the Potential of Engineered Enzymes?

1st Gen: immobilization Enzyme re-use

Adsorption, crosslinking

2nd Gen: stabilization

Re-use + extended lifetime/ Organic solvents

Encapsulation (sol gel, mesoporous)

3rd Gen: directed assembly Synergy with Materials:

Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with tunable architectures

Microbial Electrosynthesis: Reactor Productivity Depends on Current Density (Amps/m²)

Standard ME cell

Current Density Requires High Accessible Electrode Surface Area

Lawrence Livermore National Laboratory Logan, B. et al. Environ. Sci. Technol. Lett., 2015, 2 (8), pp 206–214

Standard Electrode Materials Difficult to Scale while Maintaining Surface Area

Lawrence Livermore National Laboratory

Opportunity: Printed aerogels have hierarchical, scalable surface area; Enzymes can be used for charge transfer

Small pores for enzyme absorption for electron transfer

Larger pores for whole microbes and/or nutrient transfer/mixing

Lawrence Livermore National Laboratory in Biocorrosion and Bioelectrosynthesis. *mBio* **6**, e00496–15 (2015).

Unique Cell Designs are Available Which Increase Current Density and Decrease Diffusion Distances

3D printed ME cell

Research Needs:

- Economics, Modeling & Scaling: What is the price of the surface area?
- Highly Stable Enzymes (months of operation)
- Reducing Equivalents/Cofactors (Elimination/recycling/cheaper alternatives)
- Deep understanding of enzyme kinetics and material permeability

Unprecedented Control in Enzyme Engineering and Materials Synthesis → Rational Design of Biocatalytic Materials and Reactors

Small Scale, Modular, Higher Process
Intensity

Lawrence Livermore National Laboratory

