ADVANCED DATA LOGGING ELECTRONICS FOR HIGH PRESSURE AND TEMPERATURE SUBSURFACE ENVIRONMENTS

A. Matt Francis (PI), Jim Holmes, Matthew Barlow, Nick Chiolino, Ian Getreu - Ozark IC, Inc, Fayetteville, AR francis@ozarkic.com, holmes@ozarkic.com, barlow@ozarkic.com, chiolino@ozarkic.com, getreu@ozarkic.com

Joshua Mengers (PM), Department of Energy, Geothermal Technologies Office

Introduction

Problem

- Instruments in subsurface environments can encounter temperatures and pressures over 400°C and 150 bar
- Enhanced geothermal wells can be up to 3km deep, consisting of temperatures and pressures over 300°C and 150 bar. New wells will have to go deeper and hotter.

Solution

 Silicon Carbide Integrated Circuits provide the ability to operate at high temperatures (300 – 600 °C) due to the material properties of SiC- such as a low intrinsic carrier concentration, a large band gap, and a high thermal conductivity.

Methods

A data acquisition platform that begins with high-temperature wireline logging (WL). Data acquisition and power (tan blocks) can be combined with data processing and advanced acquisition platforms (blue blocks) to enable in-situ analysis.

Evaluation and Characterization of Existing SiC Devices

 Characterize available SiC devices - in both HiTSiC® CMOS (Raytheon) and JFET-R (NASA Glenn Research Center) – for high temperature and pressure.

Sensor Development for High Temperature **Environments**

 Investigate aerosol jet printing as a manufacturing technique for platinum-based resistors, or RTDs.

Analog Electronic Design

Design an optimized ADC in HiTSiC® and RS-485 in JFET-R, and verify performance using parasitic extracted simulations.

2. In-Situ Data **Processing** ✓ Data Acquisition 1.Comms & Power **V** Conditioning Processor/ Control Spectrometer Next-Gen HT SiC-Based WL Ceramic Substrate CICs. P&T Sensors Integrated 5. Advanced Data Acquisition Heat Sink **Products Developed** Electronic Assembly (PCB) I. JFET-R RS-485 State of the Art WL 2. HiTSiC® SRAM 3. HiTSiC[®] 10 bit ADC Integrated RTD Temperature Sensor 5. HiTSiC ® UV Imager

Aerosol Jet Printed Platinum Temperature Sensor (over Temperature)

Pressure at 475 °C

Results

Insulated Nickel-Plated Copper Wire Ring Oscillator Thermocouple Probe

SiC ring oscillator (Courtesy Arkansas

Center for Space and Planetary Science).

Pressure Chamber

Pressure (PSIg)

SiC HiTSiC® Ring Oscillator Frequency vs

Summary

- A high temperature high pressure data acquisition chipset provides a clear capability for understanding subsurface resources.
- When this chipset is combined with other SiC technology real-time analysis and autonomous acquisition of enhanced geothermal wells becomes a reality.
- SiC HiTSiC® and JFET-R Ring Oscillators were tested over temperature and pressure.
- An optimized ADC, UV Imager, and SRAM have been designed in HiTSiC®, an new ADC was designed in HiTSiC and an RS-485 was designed in JFET-R. Platinum RTD temperature sensors were investigated using aerosol jet printing.

Analog Electronic Design

- RS-485 in JFET-R designed awaiting arrival
- 10 bit ADC in HiTSiC® designed
- UV Imager in HiTSiC[®] ready for evaluation (NASA)

SiC RS-485 Maximum Data Rate (kbaud) Simulation

	25°C			500°C		
VDD	R0	R15	R30	R0	R15	R30
±12	12.5	6.3				
±14	25.0	25.0		6.3	6.3	
±16	25.0	25.0		12.5	12.5	
±18	25.0	50.0	25.0	12.5	12.5	6.3
±20	25.0	25.0	25.0	12.5	12.5	12.5
±25	25.0	25.0	50.0	6.3	6.3	25.0
±30	12.5	25.0	50.0	6.3	6.3	12.5

R# represents the radius from the center of a wafer in mm.

Conclusions

- In SiC semiconductors at high temperature/pressure, the temperature effects dominate pressure effects.
- The RTD printed temperature sensors can be printed on alumina substrates. With optimized cure time, the resistance observed is extremely repeatable.
- Designed CMOS 16 channel 16 bit ADC can achieve up to samples/second at 470°C
- JFET RS-485 can achieve up to 25 kbaud transmission at 500°C

Future Work

- **Evaluate chipset blocks**
- **Design and fabricate** pressure and flow sensor modules

