

Geothermal / Solar Hybrid System Modeling with Thermal Storage

Joshua McTigue,¹ Jose Castro,² Greg Mungas,³ Nick Kramer,³ John King,³ Craig Turchi,¹ Guangdong Zhu¹*

¹ National Renewable Energy Laboratory, Golden, Colorado ² Coso Operating Company, California ³ Hyperlight Energy, California * Corresponding author: Guangdong.Zhu@nrel.gov

Background

Geothermal power plants often experience declines in resource productivity over time.

- Reasons include reservoir cooling, production fluid loss, and injection strategy (well location).
- Problem is twofold: Power plant energy drops, and as power output drops below design point, the plant's conversion efficiency decreases.

Coso Geothermal Plant

- 9 flash-steam turbines of 30 MWe, with a total capacity of 270 MWe
- Experiencing declining steam quantity from reproduction wells

Hyperlight Solar Collector

- Linear Fresnel technology developer
- Convert concentrated sunlight into thermal power

Motivation

For an underperforming geothermal plant, a solar thermal hybridization with thermal storage can add the following benefits:

- Increase power generation by adding more thermal power
- Boost geothermal power-cycle efficiency, resulting in a further power addition from underperforming geothermal resource
- Increase the dispatchability of a geothermal / solar hybrid plant and help overcome the duck curve issue
- Increase solar penetration into the market at a smaller scale
- Allow solar collector developers to further lower the collector cost through more commercial deployments

Objective

- Identify the most cost-effective thermal storage systems for geothermal / solar hybrid system to increase the plant dispatchability.
- Determine whether and/or how much thermal storage will improve the power generation, dispatchability, and economics of a geothermal / solar hybrid plant.

Approach

Understand existing plant performance

		Design co	onditions	Current operating conditions			
		High pressure	Low pressure	High pressure	Low pressure		
Mass flow	kg s ⁻¹	48.0 25.0		48.0	14.3		
Temperature	$^{\circ}\mathrm{C}$	169.2	132.5	163.4	126.1		
Inlet pressure	bar	6.3	1.4	5.7	0.9		
Gross power	MW_e	30	0.0	22.5			
Net power	MW_e	29	0.2	21.7			
Condenser load	$\mathrm{MW}_{\mathrm{th}}$	161	2	164.6			
Efficiency	%	15	.6	13.7			

Thermodynamic analysis of hybrid system using IPSEpro

4 hours of storage 8 hours of storage 8 hours of storage

Annual energy modeling

Solar-field sizing		4 hours of storage		8 hours of storage		8 hours of storage	
Required power	MW_{th}	15.6		15.6		15.6	
Solar multiple	-	2.4		2.4		3.9	
Design solar power	$\mathrm{MW}_{\mathrm{th}}$	V_{th} 39.6		36.9		60.8	
Solar field area	m^2	67 170.0		67 170.0		110583.1	
Solar field area	acres	16.6		16.6		27.3	
Peak HTF mass flow	$kg s^{-1}$	233.8		233.8		384.9	
Thermal storage sizing		TT	PB	TT	PB	TT	PB
Hot-storage volume	m ³	1912.4	(25.6	3827.9	1051.0	3824.9	1250.2
Cold-storage volume	m^3	1830.0	625.6	3663.1	1251.2	3660.2	1250.2
Energy storage	MWh	62.2		124.4		124.4	
Hours of storage	h	4.0		8.0		8.0	
Performance							
Total solar input	GWh	331.8		331.8		546.3	
Total thermal energy	GWh	68.4		68.4		112.6	
Energy produced	GWh	59.7		67.8		84.5	
Excess energy	GWh	8.7 (12.7%)		0.6 (0.82%)		28.1 (24.9%)	
Efficiency *	%	18.0		20.4		15.5	
Average power	MW_{th}	6.8		7.7		9.6	
Capacity factor	% 0%	43.8		49.8		62.0	
Average storage discharge	MW_{th}	10.3		11.8		13.4	
Average discharge duration	h	4.0		5.6		6.3	
Utilization of storage	%	63.1		49.5		74.5	

Thermal Storage Evaluation

Population of thermal storage fluids

Thermal storage optimization

(a) Summer solstice. Solar multiple = 2.4

(c) Summer solstice. Solar multiple = 3.9

Future Work

- Refine thermodynamic models in IPSEpro.
- Complete annual energy model for hybrid systems.
- Perform techno-economic optimization on thermal storage size, solar field size, and selection of thermal storage fluids.