INTEGRATION OF A CONCENTRATING SOLAR STEAM TOPPING TURBINE TO AN EXISTING GEOTHERMAL BINARY POWER PLANT

Kevin Kitz (US Geothermal), Daniel Wendt (INL), Guangdong Zhu (NREL)

Objective

Demonstrate how a Geo-Solar Hybrid can be a cost effective way for any EXISTING underperforming geothermal power plant to achieve full capacity, and how it could help lower the LCOE of NEW geothermal power plants.

Advantages of Proposed Cycle

- CSP steam turbine operating at high pressure and temperature (high thermodynamic efficiency)
 - Use of a backpressure steam turbine will eliminate the large diameter low pressure stages (lower turbine $/kW)
 - Exhausting and condensing between 16 – 25 psia (lower condenser $/kW)
- The exhausted steam is condensed by boiling isopentane
 - Boiled isopentane is delivered to the binary turbine, making use of the existing turbine, condenser, and heat rejection capacity
 - Increased isopentane mass flow rate will increase binary cycle power generation $W_{turbine} = m \Delta h$
 - No additional heat rejection infrastructure required (existing cooling towers will be utilized)
- Proposed cycle uses part of the geothermal flow to pre-heat the CSP boiler water
 - Increase heat extraction from the geothermal fluid (greater resource efficiency)
 - Reduce the size of the solar array (lower array $$/kW)

Expected Outcomes

- USGeo to have a validated process flow diagram, and performance parameters for the major equipment. USGeo could then use this information to go to a private sector detailed engineering firm to design the plant, bid and purchase equipment, and install the topping cycle.
- The developed solution to be published by DOE for use by other geothermal developers both to retrofit underperforming plants and to lower the LCOE of new developments.

Anticipated Impacts of Successful Design

- Cost savings: The proposed cycle could reduce the cost per MW and MWh of the CSP plant and the geothermal power plant. For the CSP plant, capital savings could be on the order of 40% per MW through a combination of smaller collector field, smaller backpressure turbine, and no heat rejection system.
- Increased performance: As a retrofit to Raft River, the solar addition could be sized to bring the plant to full output during daylight hours by vaporizing enough pentane to 2 additional MW during the day. The solar steam turbine is estimated to produce an additional 4MW of solar power.
- New products or markets: The net output from a geo-solar hybrid should be very attractive to utilities because it would not have the minute-to-minute fluctuation of PV. The CSP would counter the mid-day sag in output at most geothermal plants. The plants generation profile would be higher during the day, because it would not have the minute-to-minute fluctuation of PV. The CSP would counter the mid-day sag in output at most geothermal plants. The plants generation profile would be higher during the day, thereby better matching actual utility load curves.
- Reduced greenhouse gas emissions: More generation from existing and new geo/solar hybrid plants reduces CO2 emissions compared to fossil-fuel generation.
- Regulatory acceptance: The smaller solar collector area per MW will reduce the land impact of CSP and so should increase regulatory and community acceptance.