Geothermal Technologies Office 2017 Peer Review

Integrated EGS R&D

Energy Efficiency & Renewable Energy

A Reactive Tracer Method for Predicting EGS Reservoir Geometry and Thermal Lifetime: Development and Field Validation

Project Officer: William Vandermeer

Total Project Funding: \$ 528,706

November 13, 2017

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigators: Jefferson Tester & Donald Koch Presenter: Adam Hawkins, PhD Cornell University

Integrated EGS R&D

Project Objectives

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Problems Addressed

- Forecast thermal performance
- Estimate effective heat transfer area
- Monitor thermal depletion
- Represent reservoir with a nonuniform fracture aperture field
- Tracer design and selection

Project Innovations

- Meso-scale field laboratory
- Reactive tracer interpretation and validation methodology
- Inversion algorithm for identifying non-uniform fracture aperture fields
- Carbon-cored nanoparticle
- GTO "Critically Important"
 parameters
 - Heat transfer area
 - Reservoir temperature profiles
 - Fracture aperture distribution

Technical Scope Summary

Energy Efficiency & Renewable Energy

- Thermal resource and site suitability
 - Develop meso-scale field laboratory for experimentation as a "geothermal analog"
- Technology
 - C-Dot nanoparticle exhibiting conservative behavior
 - Inversion algorithm to model non-uniform aperture distribution
 - Principal Component Analysis (PCA)
 - Genetic Algorithm (GA)
 - Tracer test interpretation methods

U.S. DEPARTMENT OF

ENERGY

Advection-Dispersion-Adsorption

Energy Efficiency & Renewable Energy

- Meso-scale geothermal field laboratory
 - Measure reservoir temperature profiles in 4-D
 - Demonstrate conservative transport of C-Dot nanoparticle tracer
 - Demonstrate use of absorbing and thermally degrading tracers
 - Predict thermal performance using models and reactive tracer measurements
 - Represent reservoir hydraulics with a non-uniform discrete fracture
- Commercial-scale geothermal field test
 - Identify field site
 - Plan field tests
 - Conduct laboratory experiments
 - Field testing

Proposed Metrics

- Thermal resource and site suitability
 - Accuracy of estimated parameters
 - Effective Heat transfer area
 - Thermal performance
- Energy end use potential
 - Accurate reservoir performance estimation reduces both project risk and uncertainty

Technology

- Demonstrate conservative transport behavior of novel nanoparticles in field tests
- Demonstrate use of reactive tracers
- Develop computationally efficient inversion procedures for identifying non-uniform aperture fields
- Methods for estimating project costs and benefits
 - Coupling software for cost/benefit analysis with tracer interpretation methodology

- 1. Meso-scale geothermal field laboratory
 - ✓ Measured reservoir temperature profiles in 4-D
 - Predicted and validated thermal performance
 - Represented reservoir with a non-uniform discrete fracture
- 2. Commercial-scale geothermal field test
 - ✓ Planned with Hoffsdatir direct-use reservoir (Iceland)
 - ✓ Obtained letter of intent from Reykjavik Energy
 - ✓ Collected drill cuttings for laboratory analysis

Research Documentation

• Peer-Reviewed Journals

- 1. Hawkins, A., D. Fox, M. Becker, J. Tester (2017). Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers, *Water Resources Research*, 53, doi:10.1002/2016WR019617.
- 2. Hawkins, A., M. Becker, G. Tsoflias (2017). Evaluation of inert tracers in a bedrock fracture using ground penetrating radar and thermal sensors, *Geothermics*, 67.
- 3. Fox, D., D. Koch, J. Tester (2016). An analytical thermo-hydraulic model for discretely fractured geothermal reservoirs, *Water Resources Research*, 52, doi:10.1002/2016WR018666.
- 4. Fox, D., D. Koch, J. Tester (2015). The effect of spatial aperture variations on the thermal performance of discretely fractured geothermal reservoirs, *Geothermal Energy*, 3(1), 1-29, doi:10.1186/s40517-015-0039-z.
- 5. Hawkins, A., M. Becker, J. Tester (In Review). Inert and adsorptive tracer tests for field measurement of flow-wetted surface area.
- 6. Hawkins, A., D. Fox, D. Koch, M. Becker, J. Tester (In Preparation). Field testing of an inverse model for predicting heat and mass transport in a single heterogeneous rock fracture.

Conference Proceedings

- 1. Hawkins, A. J., Fox, D. B., Zhao, R., Tester, J. W., Cathles, L. M., Koch, D. L., & Becker, M. W. (2015). *Predicting Thermal Breakthrough from Tracer Tests: Simulations and Observations in a Low-Temperature Field Laboratory*. Paper presented at the Fortieth Workshop on Geothermal Reservoir Engineering, Stanford, California.
- 2. Hawkins, A. J., Fox, D. B., Becker, M. W., & Tester, J. W. (2016). *Meso-scale field testing of reactive tracers in a model geothermal reservoir*. Paper presented at the 41st Workshop on Geothermal Reservoir Engineering, Stanford, California.

• Graduate Research Theses

- 1. Hawkins, A.J. (2017). *Reactive tracers for characterizing fractured geothermal reservoirs*. (Doctor of Philosophy), Cornell University
- 2. Fox, D. B. (2016). *Thermal hydraulic modeling of discretely fractured geothermal reservoirs.* (Doctor of Philosophy), Cornell University.
- 3. Zhou, X. (2017). *Kinetics of phenyl acetate tracer for geothermal systems*. (Master's of Engineering), Cornell University.
- 4. Gu, X. (In Progress). Heterogeneous and temperature-dependent phenyl acetate hydrolysis. (Master's of Science), Cornell University

ENERGY Energy Efficiency & Renewable Energy

- Meso-scale geothermal field laboratory
 - Altona, New York
 - Potsdam Sandstone
 - Sub-horizontal fracture 7.6 m below ground surface

ENERGY Energy Efficiency & Renewable Energy

Measured reservoir temperature profiles in 4-D

- Fiber-Optic Distributed Temperature Sensing (FO-DTS)

Injection Well 204

- Solinst Leveloggers®
- <u>~4°C rise in 45 min</u>

ENERGY Energy Efficiency & Renewable Energy

Measured reservoir temperature profiles in 4-D

- Thermally degrading tracer interpretation
- Heterogeneous hydrolysis reaction

Predicted and validated thermal performance

- Ideal Dipole-Flow in
 Uniform Aperture Field
- <u>~4°C in 48 days</u>

Predicted and validated thermal performance

• Adsorbing tracer interpretation

 Modeled reservoir with a non-uniform discrete fracture

ENERGY Energy Efficiency & Renewable Energy

- Modeled reservoir with a non-uniform discrete fracture
 - Predict thermal performance

Continuing work and future plans

Energy Efficiency & Renewable Energy

- Catalytic hydrolysis of Phenyl Acetate by hydrated minerals
 - ½ life reduced from 4 d to 2 h when 5 g crushed rock added to 100 mL water
 - Several months to develop catalyst surface
- Planned commercial-scale geothermal field test
 - Hoffsdatir direct-use reservoir (Iceland)
 - Letter of intent from Reykjavik Energy
 - Collect drill cuttings for laboratory analysis
- Conservative nanoparticle (C-Dot) behavior

Summary

 Accuracy of production well temperature forecasts

- Measured after 6 d: 29 °C
- Adsorptive tracer method: 31 °C
- Uniform aperture field: <u>No change</u>
- Non-uniform aperture field: 37 °C
- Accuracy of estimated heat transfer area
 - Temperature-based: 22 / 65 m²
 - Adsorptive tracer method: 26 / 46
 m²

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Summary

ENERGY Energy Efficiency & Renewable Energy

- Estimate accuracy for average reservoir temperature after 5 days
 - Measured (FO-DTS / Loggers): 41°C
 - Thermally degrading tracer: 40 °C
- Model for non-uniform fracture aperture field
 - Predicts a narrow (~ 1 m wide) flow channel
 - Ground Penetrating Radar (GPR) and FO-DTS in good agreement
- Awards
 - Cornell departmental award for "Excellence in Research"
 - Post-doctoral fellowship from the TomKat Center for Sustainable Energy at Stanford University

