

Energy Efficiency & Renewable Energy

Push-pull well testing using CO₂ with active source geophysical monitoring

Project Officer: William Vandermeer Total Project Funding: \$7!

Mandatory slide

Principal Investigators: Curtis M. Oldenburg Thomas M. Daley Lawrence Berkeley National Laboratory

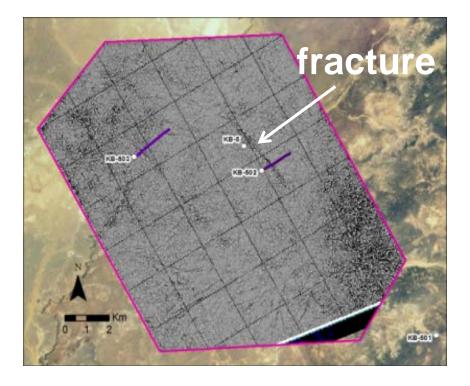
Track Three

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance to Industry Needs and GTO Objectives

ENERGY Energy Efficiency & Renewable Energy

- Motivation
 - Enhanced Geothermal Systems (EGS) benefit from the ability to control fracture flow and fracturing
 - In order to control, need ability to characterize faults and fractures
 - Natural and induced faults/fractures are hard to image.
 - Seismic and electrical contrast are small for water-filled faults/fractures
 - Gas injected into faults/fractures enhances contrast
- Objective
 - Develop and demonstrate (by modeling) a new technology for characterizing faulted/fractured geothermal systems involving
 - CO₂ push-pull and related pressure-transient testing
 - Active-source seismic imaging
 - Well logging


Mandatory- may utilize multiple slides

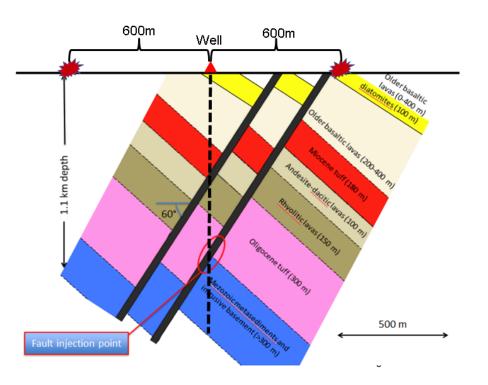
Relevance to Industry Needs and GTO Objectives

ENERGY Ene

Energy Efficiency & Renewable Energy

- Key idea: Inject CO₂ into fault or fracture zone to enhance imaging of the fault or fracture
 - CO₂ has been shown to enhance seismic detection of a large fracture zone
 - CO₂ is non-wetting (capillarity holds water in matrix) so it has strong preference for flowing in faults and fractures
 - scCO₂ is relatively dense diminishing upward buoyancy effect
 - scCO₂ has low viscosity which allows it to flow in fracture/fault
 - There is lots of experience with scCO₂ from geologic carbon sequestration research

Zhang, R., Vasco, D., and Daley, T.M., 2015. Study of seismic diffractions caused by a fracture zone at In Salah carbon dioxide storage project. International Journal of Greenhouse Gas Control, 42, pp.75-86.


Mandatory- may utilize multiple slides

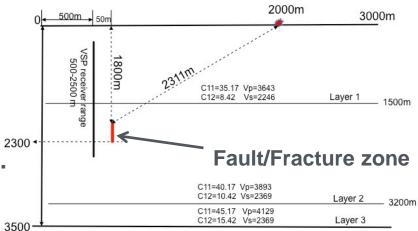
Methods/Approach

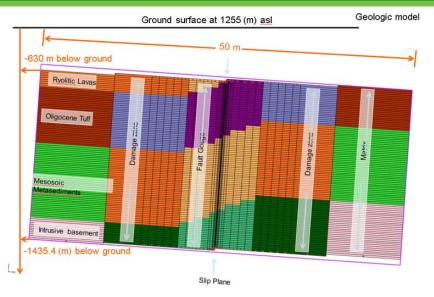
Energy Efficiency & Renewable Energy

- Define prototypical EGS site based on Brady's Hot Springs system
- Simulate CO₂ injection using TOUGH2/ECO2N V.2
- Simulate active seismic monitoring
- Simulate well logging
- Simulate pressure-transient analysis
- Carry out sensitivity and dataworth analysis
- Combine the modeled results to infer fault properties

Mandatory- may utilize multiple slides

U.S. DEPARTMENT OF

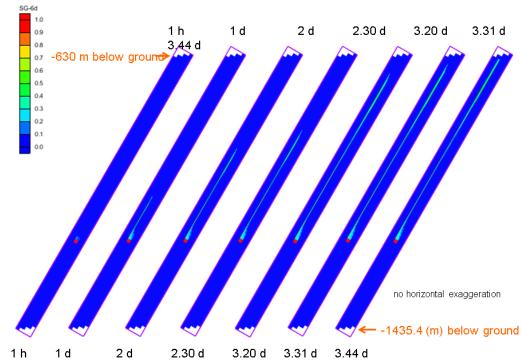

ENERGY


- Excellent collaborative team
 - Flow modeling and simulation, well-testing (LBNL)
 - Well logging, geophysics simulation (Schlumberger-Doll Research)
 - Seismic modeling (LBNL and Univ. Louisiana, Lafayette)
- Step-by-step approach
 - Selection of prototypical site and characteristics
 - Flow modeling to establish expected, P, T, X, and saturation
 - Simulation of well logging and seismic imaging
 - Well test simulation and inverse modeling
- Key issues
 - Extent of CO_2 flow in fault zone (e.g., gouge), recovery, etc.
 - Extent to which CO₂ can be imaged by logging and seismic methods
- Over three years, we investigated these issues and more.

- Developed and tested by simulation the concept of using CO₂ as a contrast enhancement fluid for EGS fault charaterization
- Simulated multiple scenarios of CO₂ injection into a prototypical fault zone
- Estimated effectiveness of well-logging tools to image injected CO₂
- Simulated well tests and sensitivity of fault properties to CO₂ injection for use in inversion
- Simulated seismic monitoring of various kinds (Surface, VSP, Cross-well)
- Inverted for fault location from cross-well seismic simulated data
- Developed draft test plan for field testing

We use an anisotropic finite difference code based on SPICE with fracture compliance models to simulate active seismic monitoring in time-lapse mode.²³

Mandatory- may utilize multiple slides



- Despite relatively high density of CO₂, buoyancy leads to upflow during push and difficulty recovering CO₂.
- During pull, tend to get mostly water production.

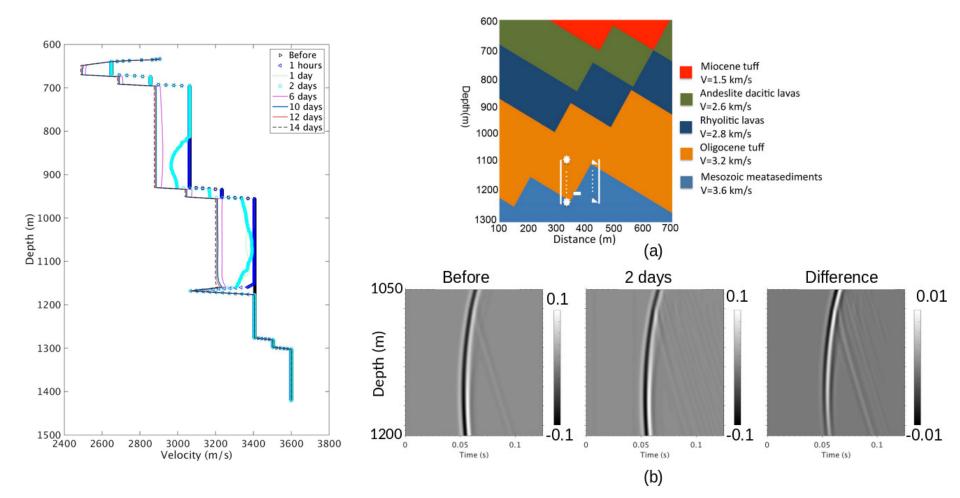
• Faults comprise slip plane, gouge, and damage zone.

U.S. DEPARTMENT OF

• Prototype system is based on Desert Peak (Bradys)

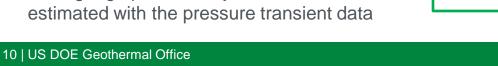
Energy Efficiency &

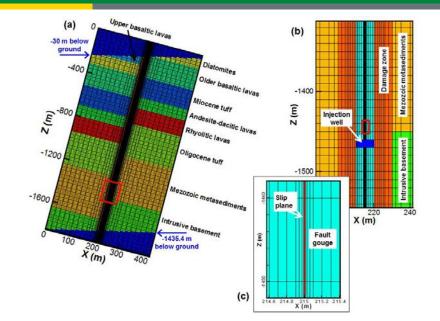
Renewable Energy

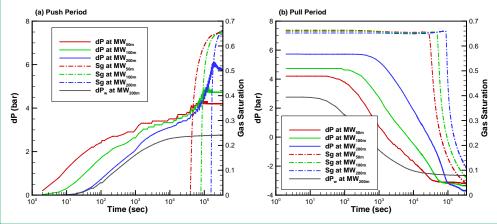

Limited set of logging tools is available for EGS environment due to high temperature

 Neutron capture (HAPS) monitoring might be feasible for fault gouge (and limited for slip-plane and damage zone), provided enough salinity contrast (or pre-flush with high-salinity brine). This is a <u>shallow measurement</u> (5-10" into formation).

Tool	Effective Property	Matrix	Damage zone	Fault gouge	Slip plane
HLDS	bulk density				
HSLT	elastic properties				
HIT	conductivity				
HAPS	capture cross- section				


feasibility <mark>possibl</mark>e lim<mark>ited no</mark>

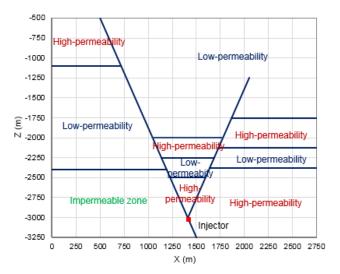

FD simulation of cross-well seismic using simulated saturations in the Desert Peak prototype produce time-lapse differences of approximately 10%.

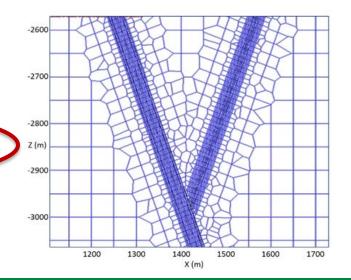

Energy Efficiency & **Renewable Energy**

- **Goal:** Evaluate feasibility of using pressure transient monitoring during CO₂ push-pull tests to complement active seismic and wireline well logging for EGS characterization
- Create **2D model** of a single fault based on the Desert Peak geothermal field
- The fault zone consists of slip plane, fault gouge, and damage zone, and is bounded by the surrounding country rocks
- The **pressure transient** at the monitoring wells in the fault gouge shows unique traits due to the multiphase flow conditions developed by CO₂ injection, and varies sensitively on the arrival of the CO₂ plume
- Sensitivity analysis
 - Pressure transient is most sensitive to the fault gouge permeability
 - Optimal monitoring well location is 200 m above injection point
- Fault gouge permeability can be best estimated with the pressure transient data

U.S. DEPARTMENT OF

11 | US DOE Geothermal Office

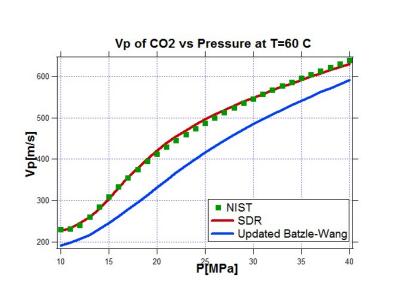

Dixie Valley is another promising geothermal site: QUESTION: What are the optimal measurements during CO_2 push-pull to characterize the faults?

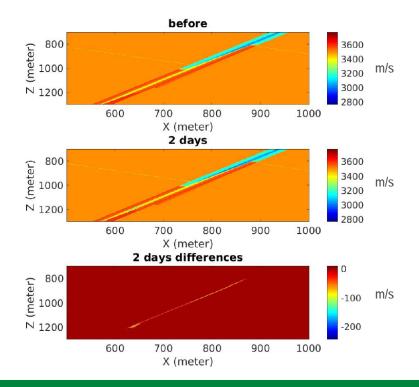

Approach: Data-worth analysis for 30-days of CO₂ push

- Perturb 8 most-controlling unknown parameters:
- Slip plane (K, S_{Ir}), Fault gouge (K, S_{Ir}, λ , 1/P₀), Damage zone (K, 1/P₀) 8
- Observe for 20 days, 12 most-sensitive measurable responses:
- Pressure (main & conjugate fault @ 2925, 2520, 2100 m) 6
 Gas saturation (main & conjugate fault @ 2925, 2520 m) 4
 Temperature (conjugate fault @ 2520, 2100) 2
- Predict the CO₂ distributions in the fault zones after 30 days.
- S_G and X_CO₂(A) at main & conjugate fault @ 2925, 2520, 2100 m) 6

Evaluate dataworth, as an increase of prediction uncertainty caused by removal of observation data

Measurement	DWA (%)
Main Fault Pressure @2925 m	5.2
Main Fault Pressure @2520 m	17.18
Main Fault Pressure @2100 m	11.47
Conjugate Fault Pressure @2925 m	3.59
Conjugate Fault Pressure @2520 m	31.44
Conjugate Fault Pressure @2100 m	30.55
Main Fault Sg @2925 m	0.18
Main Fault Sg @2520 m	0.07
Conjugate Fault Sg @2925 m	0.21
Conjugate Fault Sg @2520 m	0.11
Conjugate Fault Temperature @2520 m	0
Conjugate Fault Temperature @2100 m	0





Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
M1.2. Powerpoint summarizing end-member fractured reservoir characteristics	Developed ppt showing topologies of different fault/fracture sets, orientations, and intersections	12/31/2014
M2.1. Powerpoint summarizing simulations of CO2 well tests in fractured reservoirs	Developed ppt showing TOUGH2/ECO2N V.2 simulations of push-pull tests	3/31/2015
G2. Go/No-Go: Must show through simple models or empirical results that typical expected CO2 saturations in fractures can be imaged by active seismic and/or well logging approaches.	Developed ppt showing preliminary results of CO2 impact on seismic velocity change and neutron capture logging	9/30/2015
M3.1. Powerpoint summarizing design of geophysical monitoring scenario	Go/No-Go presentation was not held until late Ocotober, and Go decision was not conveyed until Nov. 23, 2015 so could not start these tasks on 10/1/15.	3/31/16
M3.3. Powerpoint summarizing design of well logging scenario	See above.	3/31/2016
M4. Powerpoint summarizing simulation of well logging	We demonstrated simulation of neutron capture well logging and showed its sensitivity for detecting CO2 especially for highly saline systems.	9/30/2016
G4. Go/No-Go: Demonstrate ability to simulate seismic imaging of CO2 in a fractured reservoir	We have demonstrated ability to simulate imaging in the 2D Brady's system.	9/30/2016
M5.1. Powerpoint summarizing inversion of virtual hydrologic well test data	We carried out inversion and data-worth analysis. Powerpoint is included in Q2 FY17 quarterly report.	3/31/2017
M5.2. Powerpoint summarizing inversion of virtual geophysical data	We carried out reverse-time migration.	10/30/2017
G5. Go/No-Go: Demonstrate ability to jointly invert well-test, geophysical, and well logging data to estimate fracture locations and properties	We inverted synthetic seismic and well-test data. Joint inversion was secondary importance to individual inversion which consumed the available time and budget.	10/30/2017
M6. Written final report	We assembled the final report from various conference proceedings, one published journal article, and three other journal articles in prep.	10/30/2017

12 | US DOE Geothermal Office

- **ENERGY** Energy Efficiency & Renewable Energy
- This project was carried out with Schlumberger-Doll Research (SDR) and the University of Louisiana, Lafayette
- We discussed approaches and methods on regular weekly screen-share telecons over three years
- SDR provided valuable assistance with modeling of geophysical monitoring using CO₂ which will lead to improvements in the seismic modeling code.

Future Directions

- **ENERGY** Energy Efficiency & Renewable Energy
- We evaluated potential sites in the U.S. for a field demonstration.
- We have written a field test plan for Desert Peak (excerpts below).

Table 1. Potential sites for developing the ASCO experiment. Highlighted: yellow \rightarrow best; green \rightarrow good. Properties $\mathbf{1}$ Locations → Brady's Desert Peak San Emidio Dixie Valley SURF Depth of fault intersections 500-2000 500-2000 500-1500 500-1500 1478 200-230 Temperature °C 160-180 140-160 230-250 35 phyllite and Lithology metasediments <u>metasedimen</u>ts metasediments amphibolite metasediments Known transmissive faults yes yes yes yes no Gouge or damage present good good good good no Open fractures within fault excellent very good good good no Sealed system poor good poor poor yes highly complex Complexity of structures complex relatively simple complex yes well geometry for seismic monitoring excellent probably good very good good Wells intersecting faults not known currently yes yes yes yes Availability of wells probably many good probably few probably few numerous Partneringpotential excellent good good very good very good Degree of characterization very good very good very good very good very good

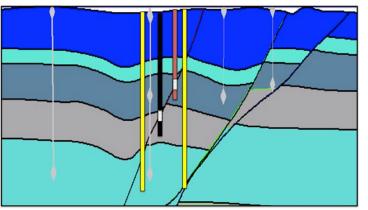


Fig. 3. Proposed fault experiment borehole geometry. The black borehole is an injection well perforated in the white interval, and the red borehole is a geochemical sampling well perforated in the white interval. The yellow wells are dedicated geophysical monitoring wells. The monitoring well spacing would ideally be 30-50 m from the injection well.

Future research related to this project:

- Better characterization of actual fault zones for modeling
- Full wave-form inversion
- Coupled active fracturing and imaging using CO₂ to account for aperture and elastic rock property changes
- Design of seismic survey to maximize imaging CO₂ in fault zone
- Other prototypical systems (e.g., highly fractured systems)

- Simulations show that CO₂ can be injected into fault zones (gouge) for push-pull well testing and as contrast fluid for geophysical monitoring.
- CO₂ buoyancy causes CO₂ to rise causing poor recovery during pull.
- Simulations of seismic monitoring using anisotropic FD code are sensitive to CO₂-water saturation in the gouge zone of a fault.
- Depending on seismic monitoring configuration, differences from preinjection (no CO₂) to post push (CO₂ injection) produce time-lapse differences on the order of 1-10% percent.
- Detection of 1-10% difference will require very high-quality data.
- The HAPS logging tool response for neutron capture cross-section (Σ) is expected to perform well based on modeling by Schlumberger.
- Simulations and sensitivity studies of CO₂ push-pull in systems based on Desert Peak and Dixie Valley show that pressure change in the fault is the most valuable field measurement for characterization because it is sensitive to gouge properties.

Mandatory- keep to one slide

• Publications arising from this project:

Borgia, A., Oldenburg C.M., Zhang R., Pan L., Finsterle S., Ramakrishnan T.S., 2015. **Simulations of CO₂ push-pull in fractures to enhance geophysical contrast for characterizing EGS sites**. PROCEEDINGS, TOUGH Symposium 2015, Lawrence Berkeley National Laboratory, Berkeley, California, September 28-30, p. 109-115.

Borgia, A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Altundas B., Chugunov N., Ramakrishnan T.S., 2017a. **Simulations of Carbon Dioxide Injection, Seismic Monitoring, and Well Logging for Enhanced Characterization of Faults in Geothermal Systems**. PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, SGP-TR-212.

Borgia, A., Oldenburg C.M., Zhang R., Pan L., Daley T.M., Finsterle S., Ramakrishnan T.S., 2017b. **Simulation of CO₂ injection into fractures and faults for improving their geophysical characterization at EGS Sites**. Geothermics, , v. 69, p. 189-201, http://dx.doi.org/10.1016/j.geothermics.2017.05.002.

Jung, Yoojin, Christine Doughty, Andrea Borgia, Kyung Jae Lee, Curtis M. Oldenburg, Lehua Pan, Thomas M. Daley, Rui Zhang, Bilgin Altundas, Nikita Chugunov, T.S. Ramakrishnan, **Pressure transient analysis during CO2 push-pull tests into faults for EGS characterization**, in prep.

Lee, Kyung Jae, Curtis M. Oldenburg, Christine Doughty, Yoojin Jung, Andrea Borgia, Lehua Pan, Rui Zhang, Thomas M. Daley, Bilgin Altundas, and Nikita Chugunov, Simulations of Carbon Dioxide Push-Pull into a Conjugate Fault System Modeled after Dixie Valley—Sensitivity Analysis of Significant Parameters and Uncertainty Prediction by Data-Worth Analysis, *Geothermics*, in review.

Oldenburg, C.M., Daley, T.M., Borgia, A., Zhang, R., Doughty, C., Ramakrishnan, T.S., Altundas, B., Chugunov, N., 2016. Preliminary Simulations of Carbon Dioxide Injection and Geophysical Monitoring to Improve Imaging and Characterization of Faults and Fractures at EGS Sites. PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 22-24, 2016, SGP-TR-209.

Zhang, Rui, Andrea Borgia, Thomas M Daley, Curtis M. Oldenburg, Yoojin Jung, Kyung Jae Lee, Tieyuan Zhu, Christine Doughty, Bilgin Altundas, Nikita Chugunov, T.S. Ramakrishnan, **Time-lapse multi-scale seismic modeling of injected CO**₂ in a fault zone for enhanced characterization of permeable flow paths in geothermal systems, in prep.

Optional slide- keep to one slide