
Geothermal Technologies Office 2017 Peer Review

Play Fairway Analysis of Geothermal Potential across the State of Hawaii Nov 15, 2017

Nicole Lautze University of Hawaii (UH)

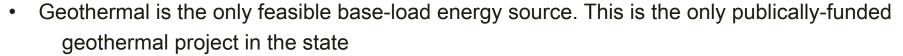
Track: Hydrothermal Project Officer: Eric Hass

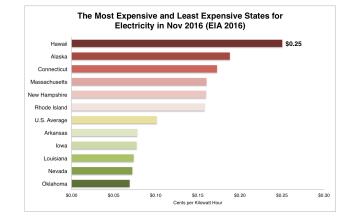
Total Project Funding: \$1,567,732 (excl cost share)

Relevance to Industry Needs and GTO Objectives

Project Objectives

Phase 1. Identify, compile, and rank geothermal-relevant data across the State of Hawaii. Develop methods to integrate different data types into resource probability map

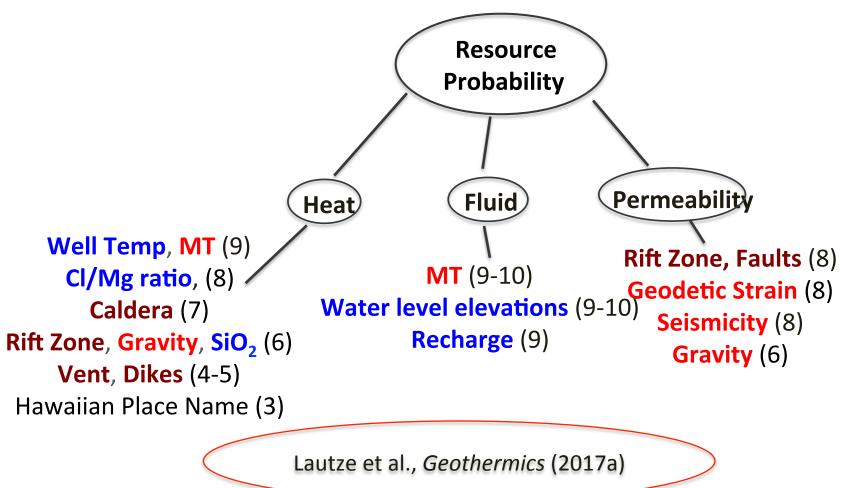

Phase 2. New geophysical and groundwater surveys in up to 10 target areas; methods for 3D data; model topographic stresses to improve Phase 1 probability map



Phase 3. Validate resource through collaborative drilling in 1 of 2 targets

Impact / Innovation

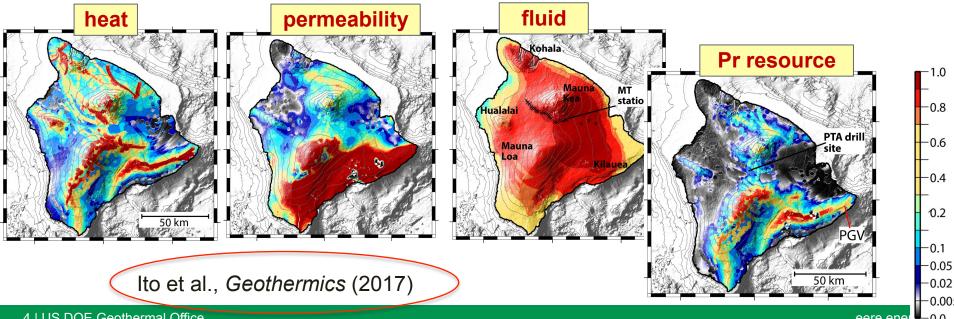
- Hawaii pays 2.5x the national average for electricity
- Unique geologic setting
- Last statewide geothermal assessment (1985) found potential resource on *all* islands. Little exploration since
- Policy objective that state is 100% renewable by 2045


Alignment with GTO goals

- Lower risk of development
- Lower electricity costs
- Near term **blind** hydrothermal resource growth

Data Identification, Collection and Ranking - Phase 1

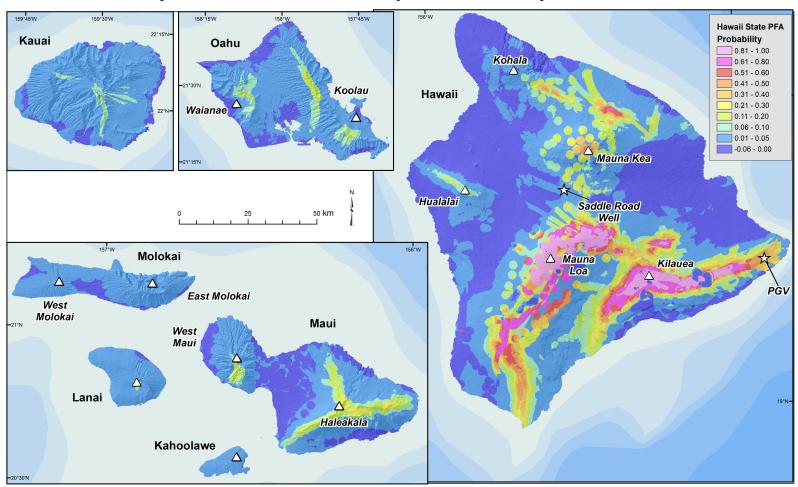
GEOLOGICAL, GEOPHYSICAL, and GROUNDWATER data



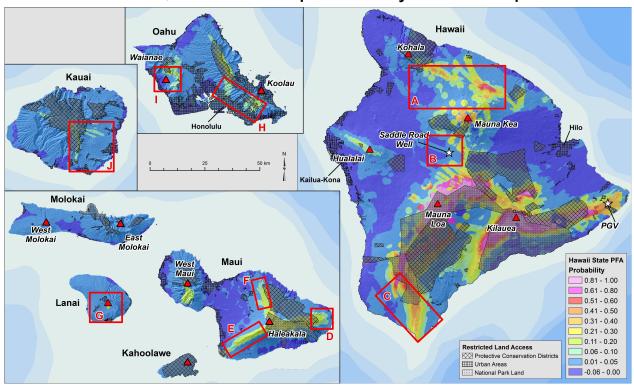
Statistical Approach – Phase 1

Each *processed* data type a_i is weighted and combined with other data using a generalized linear model with expit function. For example, the *probability of heat* at location x is given by,

$$\Pr(H|\vec{x}) = \left[1 + \exp\left(-w_{0H} - \sum_{i=1}^{n} w_{iH} a_i(\vec{x})\right)\right]^{-1}.$$


The probability of a resource at a given location is the joint probability of H, F, P, approximately equal to the product: $\Pr(H, F, P|\vec{x}) \approx \Pr(H|\vec{x}) \Pr(F|\vec{x}) \Pr(P|\vec{x}).$

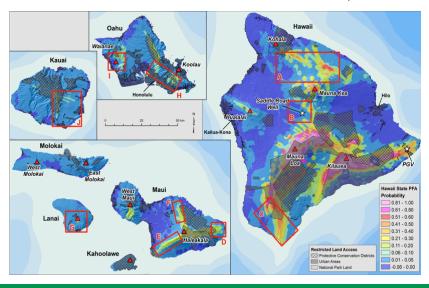
Probability Map - Phase 1


3 Products: Probability, Confidence, & Development Viability used to select Phase 2 targets

Development Viability - Phase 1

if a resource is identified, what is the plausibility of development?

- Level of community acceptance
- Vulnerability to natural hazards


- Compatibility of land use/zoning
- Integration into electrical grid

Lautze et al., Geothermics (2017b)

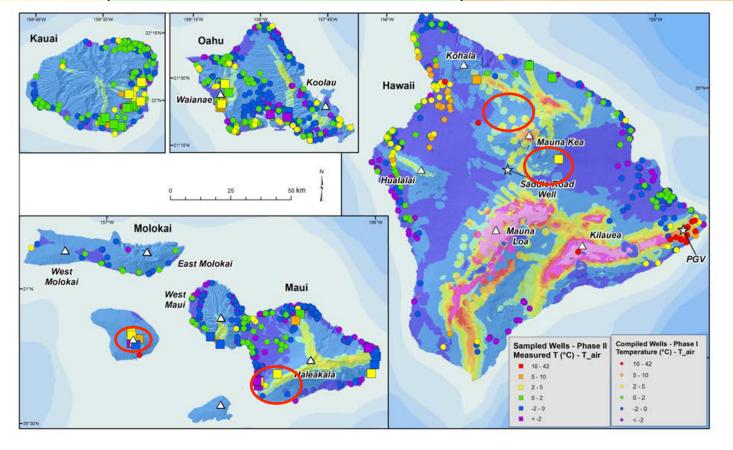
Prioritization of Phase 2
Tasks

Table 4. Proposed Phase 2 Targets and Priority Ranking

Site	Phase 1 Rankings			Rai	Rankings of Priorities for Phase 2		
	Resource Probability	Confidence	Dev. Viability	Water Surveys	Stress Modeling	Geophy. Surveys	2-D/3-D Modeling
North M.Kea (Hawaii)	70-120%, H	35-53%, M	M	н	н	M	H/M
SW M. Kea, Saddle (Hawaii)	10-70%, L-H	12-24% L	L-M	L	н	L	H/M
SW Haleakala (Maui)	24-43%, L-M	11-36% L- M	н	н	н	н	H/H
Lanai	10-24% L	35-42% M	Н	н	н	н	\mathbf{H}/\mathbf{H}
SW MLoa (Hawaii)	95-120% H	35-47% M	L-M	M	Н	L	H/L

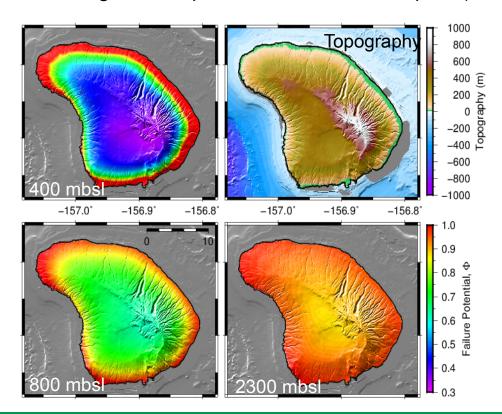
Four BP2 Tasks

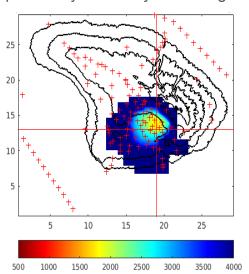
- (1) Geophysical Surveys 🗸
- (2) Groundwater Sampling & Analyses 🗸
- (3) Stress / Failure Potential Modeling 🗸
- (4) New probability maps from 2D/3D information ✓


COMPLETED 110% OF BP2
OBJECTIVES!*

Technical Accomplishments and Progress

PHASE 2 TASK	OUTPUT	OUTCOME
8. Groundwater Sampling	62 samples collected in 10 areas analyzed for T, major, trace elements and isotopes	*Expanded and validated Phase 1 groundwater dataset relevant to geothermal *Improved GW flow paths for Lanai
Topographic Stress Modeling	3D models of stresses for all target islands	Improve probability and confidence maps.
10. Geophysical Surveys	- 44 MT sites Lanai, 8 MT sites Maui - New inversions of MT lines, Mauna Kea	* Significantly added to geophysical data relevant to geothermal potential on Lanai, Maui, and Hawaii.
	- 140 gravity stations Lanai - 73 gravity stations Mauna Kea	* 2D/3D structural models (density & resistivity) to identify & rank drill sites.
	 Acquire and inverted a gravity survey, Haleakala SE Rift Zone 	
11. Update Probability and Confidence Maps	Updated maps of probability of heat, permeability, fluid, and geothermal resources across Hawaii and in the 3 geophysical survey areas	Improved assessment of resource potential statewide.
12. Rank Drilling Plays for BP3	Qualitative and quantitative evaluations of all data in the 3 geophysical survey areas	Priority 1: SE Mauna Kea Priority 2: Lanai's <u>Palawai</u> caldera


PHASE 2 TAS	HASE 2 TASK OUTPUT		OUTCOME
8. Groundwater Sampling		62 samples collected in 10 areas analyzed for T, major, trace elements and isotopes	*Expanded and validated Phase 1 groundwater dataset relevant to geothermal *Improved GW flow paths for Lanai


PHASE 2 TASK	OUTPUT	OUTCOME
9.Topographic Stress Modeling	3D models of stresses for all target islands	Improve probability and confidence maps.

LANAI: High failure potential at reservoir depths (1-3 km) favorable for enhanced permeability

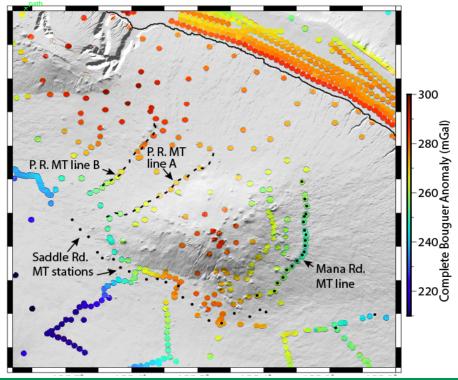
New method & code **1000x faster** than other methods

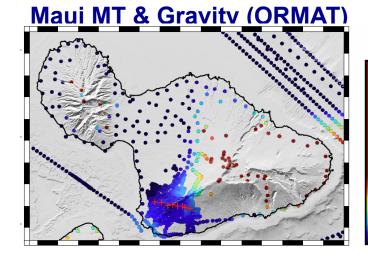
Depth below surface to the 90% probability of density > 2900 kg/m

ENERGY

PHASE 2 TASK 10. Geophysical

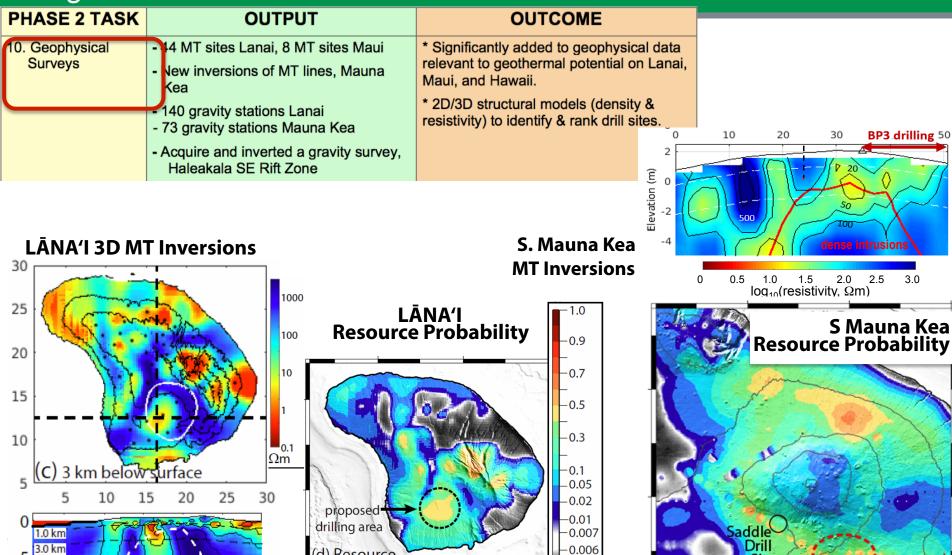
Surveys


OUTPUT OUTCOME


- 44 MT sites Lanai, 8 MT sites Maui
- New inversions of MT lines, Mauna Kea
- 140 gravity stations Lanai
- 73 gravity stations Mauna Kea
- Acquire and inverted a gravity survey, Haleakala SE Rift Zone
- * Significantly added to geophysical data relevant to geothermal potential on Lanai, Maui, and Hawaii.
- * 2D/3D structural models (density & resistivity) to identify & rank drill sites.

Lāna'i: 44 MT 144 Gravity **Sites**

Mauna Kea MT & Gravity (PF Bonus!)



290 (la 280 (l 270 260 250 240 230 220

Technical Accomplishments and Progress

Site

0.0 Prob-

ability

(d) Resource

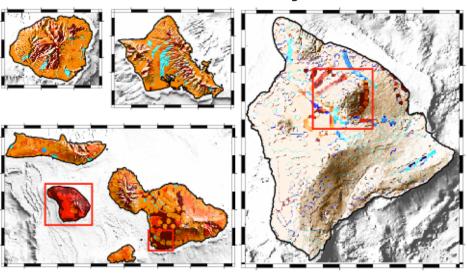
intrusions

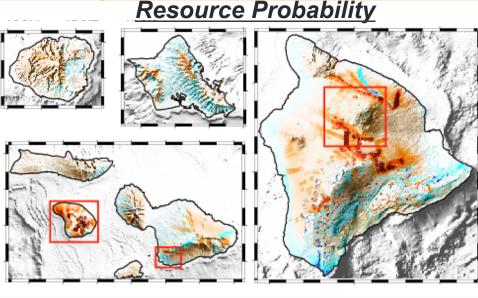
proposed

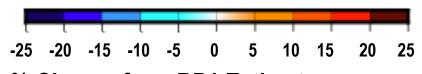
drilling area

Technical Accomplishments and Progress

PHASE 2 TASK


OUTPUT


OUTCOME


Update
 Probability and
 Confidence Maps

Updated maps of probability of heat, permeability, fluid, and geothermal resources across Hawaii and in the 3 geophysical survey areas Improved assessment of resource potential statewide.

Confidence in Probability

% Change from BP1 Estimate

Future Directions

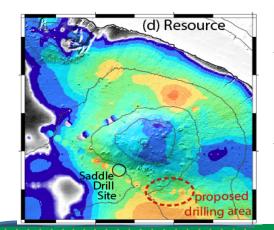
PHASE 2 TASK	OUTPUT	OUTCOME	
12. Rank Drilling Plays for BP3	Qualitative and quantitative evaluations of all data in the 3 geophysical survey areas	Priority 1: SE Mauna Kea Priority 2: Lanai's Palawai caldera	

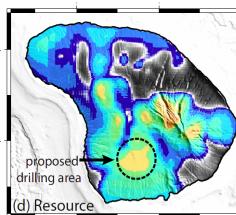
Five Locations Considered, Two Selected

<u>Haleakalā SW rift (Maui); N & E Mauna Kea:</u>

Lower Probability Targets

- Geophysics indicates that resource is deep (3 to >4 km)
- On SW Haleakalā and N and E Mauna Kea, resistivity and gravity 'inconsistent'


(d) Resource


SSE Mauna Kea and Lāna'i: Go's

Elevated Probability and Confidence due to 4 Phase 2 datasets...

MT, Gravity, Groundwater, Stress

= Validation of PF methodology!

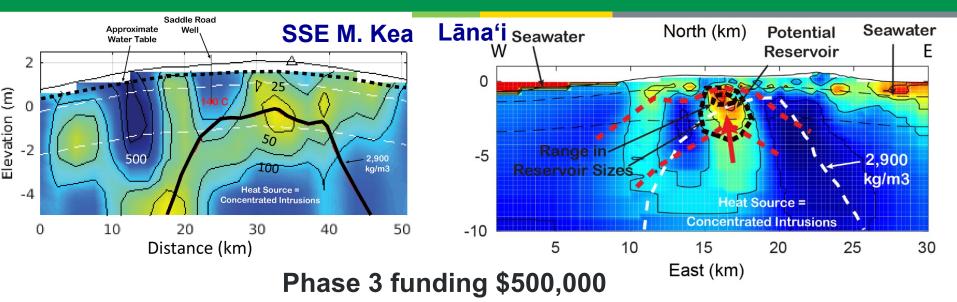
Technical Accomplishments and Progress

Phase 2: Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
7. Groundwater Sampling	Samples Collected & Analyzed	4-15-17
8. Geophysics – Lanai, Maui	Data Collected and Processed	4-15-17
9. Crustal Stress Modeling	Statewide Modeling Complete	4-20-17 🗸
10. Improved Pr, C Maps	Data Integrated into New Maps	5-1-17
11. Rank Plays for Phase 3	Plays Ranked & Proposal Written	5-5-17

Special recognition

- C3E Women in Clean Energy award in Education (Lautze)
- Promotion to Associate Tenure-Track position (Lautze)

Research Collaboration and Technology Transfer


- 5 peer-reviewed publications
- 10 conference proceedings
- 9 media appearances and 10+ news articles
- Trained 6 undergraduate and 3 graduate students
- All data uploaded to GDR
- Local outreach (e.g. Science Café hosted by Hawaiian Studies Dept.)

- Pūlama Lāna'i
- Dept of Hawaiian Home Lands
- Parker Ranch (Big Island)
- Ulupalakua Ranch (Maui)
- Departments of Water Supply
- U.S. Navy, U.S. Army
- Hawaiian Electric Company
- DBEDT, Dept of Health
- University of Nevada Reno
- University of Utah

Future Directions

Partner to collect scientific data from planned test well on Lanai

Milestone or Go/No-Go	Status & Expected Completion Date
14. Collection & Analysis of Core	2018
15. Collection & Analysis of Fluids	2018
16. Downhole Geophysics	2018
17. Injection/Flow Testing	2018
18. Improved Pr, C maps	2019

Summary

- Phase 1 and 2 very successful all project objectives met
 - Encouraging results for Lāna'i, SSE Mauna Kea. Drilling next step.
 - Question: conductive zones near expected reservoir depth not associated with gravity high (SW rift Haleakalā Maui, N and E Mauna Kea)
- Development of methodology to prospect for deep (1-3 km), blind targets
- ✓ Hawaii Play Fairway major step forward for state
 - updated statewide resource assessment roadmap for additional prospecting

data aggregation

- ID of key sites for drilling
- universally-applicable methodology
- ✓ Project meets GTO's goals to:
 - lower cost of exploration and development by identifying highest probability resource areas;
 - lower the cost of electricity in the state that pays the most for it;
 - accelerate development of undiscovered, blind resources as recent findings suggest resources may exist in previously unrecognized area(s).