

confidential, or otherwise restricted information.

Cristian Pantea¹, Eric S. Davis^{1,2}, Dipen N. Sinha¹, Craig Chavez¹, Vamshi Chillara¹, Bill Carey¹, Yu Chen¹, Lianjie Huang¹, Barbara Kutchko³, Dustin Crandall³, Roger Chen⁴, Douglas A. Blankenship⁵, Jiann-Cherng Su⁵, Hector J. Santos-Villalobos⁶, Yarom Polsky⁶, Roger Kisner⁶

⁴West Virginia University, Department of Civil and Environmental Engineering, Morgantown, WV 26506 ⁵Sandia National Laboratories, Albuquerque, NM 87185 ⁶Oak Ridge National Laboratory, Oak Ridge, TN 37831

ENERGY Energy Efficiency & Renewable Energy

Main objective: develop a high-resolution 3D imaging system for improved wellbore diagnostics and integrity assessment

- Challenges addressed: imaging, with high-resolution, of defects/fractures beyond casing
- Costs similar to existing technology
- Performance improved performance, better resolution
- Applications wellbore integrity assessment
- Markets any underground borehole
- Innovative aspects: low frequency, collimated beam.
 - Combination of a unique source with advanced image processing
 - An approach that can be deployed to characterize foamed cements in-situ

 \rightarrow identify acoustic-based metrics from comparison with CT scans

ENERGY Energy Efficiency & Renewable Energy

Main objective: develop a high-resolution 3D imaging system for improved wellbore diagnostics and integrity assessment The Problem:

Defects/fracture detection beyond casing with high resolution. No current techniques.

* Picture from S.E. Gasda, Environ Geol (2004) 46: 707-720

4 | US DOE Geothermal Office

We plan to extend applicability to: (1) casing-cement interface, (2) cement-formation interface, and (3) out in the formation (up to ~ 3 meters).

Comparison of existing techniques and the present approach

Method	Frequency (kHz)	Range (m)	Resolution (mm)			
Standard borehole sonic probe, e.g. BARS (Borehole Acoustic Reflection Survey)	0.3-8	15	~ 300			
Present approach	10-150	~ 3	~ 5			
Ultrasonic probe, e.g. UBI (Ultrasonic Borehole Imager)	>250	casing	4-5			

beam profile

Attenuation ~ f^n f =frequency, n = 1-2Low frequency deep penetration Collimated Conventional High frequency low-frequency beam limited penetration transducer

Relevance to Industry Needs and GTO Objectives

The Proposed Solution:

Novel technique that fills this technology gap.

1. Collimated beam for increased resolution

Transducer

ENERGY Energy Efficiency & Renewable Energy

2. Low frequency for deeper penetration

eere.energy.gov

Relevance to Industry Needs and GTO Objectives

Geothermal Technologies Office's goals targeted by this project

- Overcoming technical obstacles and mitigating risk
- Overcoming deployment barriers
- Collaborating on solutions to subsurface energy challenges

Energy Efficiency & Renewable Energy

Multi-lab project

Inter-lab collaboration and teaming arrangements/partnerships

U.S. DEPARTMENT OF

ENERGY

- LANL: Develop acoustic source, imaging system, and image processing.
- NETL: Investigate acoustic metrics for foamed cements. Incorporate new metrics for wellbores in the field.
- ORNL: Explore different image processing approaches.
- SNL: Perform experiments in more realistic boreholes. Incorporate data from realistic borehole and compare resolution with lab experiments.

Energy Efficiency & Renewable Energy

Advanced image processing techniques:

- (1) LANL's Elastic-Waveform Inversion,
- (2) LANL's Least-Squares Reverse-Time Migration techniques,
- (3) ORNL's model-based iterative reconstruction (MBIR).

conventional

enhanced

Methods/Approach

Energy Efficiency & Renewable Energy

- Foamed cements (w/ NETL)
 - limited information on foamed cement behavior at conditions specific to wellbores exists at present and
 - conventional methods have difficulty detecting foamed cement due to low impedance contrast.

Acoustic (LANL) $\leftarrow \rightarrow$ CT (NETL)

Acoustic characterization: sound speed, attenuation, acoustic nonlinearity, elastic moduli

Realistic environments (w/ Sandia)

 Perform imaging experiments in more realistic simulated wellbore environments

* From JPT, vol . 67, no. 1, Jan 2015

Energy Efficiency & Renewable Energy

Bessel-like Acoustic Source

Beam profile in water for the 3rd radial mode RM-3; free transducer (left) and clamped transducer (right)

Appl. Phys. Lett., vol. 110, issue 6, (2017), 064101

eere.energy.gov

Energy Efficiency & Renewable Energy

Defects detection – Bessel-like Source

Cased borehole configuration (Steel-lined cement barrel) Reflection seismology – Common receiver representation

Cement OD: 460 mm Cement ID:170 mm Steel pipe ID: 148 mm Steel pipe thickness: 10 mm Groove depth: 50 mm Plastic pipe location: 25 mm

Defects detection – Bessel-like Source

Energy Efficiency & Renewable Energy

LANL image processing

Open borehole configuration (Plexiglas-lined cement barrel) Multi-scale acoustic full-waveform inversion algorithm for velocity model Radius/cm (a) ₀ (d) 0 12 24 2750 Excitation: 29-112 kHz Bessel-like 21-21-250C Acoustic Source Vertical/cm Vertical/cm 33-2250 Data collected using fixed azimuth, and vertical translation of source and 2000 receivers. 39-39-1750 45 1500 29 KHZ 112 kHz Radius/cm Radius/cm (d) 12 24 15 2750 21-21-2500 Vertical/cm 33-Vertical/cm 33-2250 2000 39 1750 39-

Energy Efficiency & Renewable Energy

Elastic Properties of Foamed Cement

- Ultrasonic testing of Foamed Cement cylinder specimens with size approximately 25 mm (diameter) x 110 mm.
- Equivalent Age was calculated using the Arrhenius equation with an Activation Energy of 35,418 J/mol.

LANL got similar values.

Poisson ratio was determined to be ~0.25, for both longitudinal and shear propagation modes.

Large change in elastic moduli with air content \rightarrow significant softening

Case (Foam Quality)	0%	10%	20%	30%
P-Wave Velocity+ (m/s)	3371.5	3060.4	2877.6	2661.8
Mass Density ⁺ (^{kg/} m ³)	2120.9	1853.2	1650.3	1468.4
Poisson's Ratio*	0.18	0.18	0.19	0.2
Young's Modulus (GPa)	22.2	15.48	11.9	8.8

+ measured, *assumed

P-Wave Velocity vs. Equivalent Age

14 | US DOE Geothermal Office

Granite Block Samples – Sandia National Laboratory

Rock sample in drilling facility

4 CASING SAMPLES PER BLOCK

Targeted Casing Defects:

- Wall thinning
 - Pre-machine thin section in casing prior to cementing
- Casing eccentricity
 - Offset casing with jig during cementing
- Channeling
 - Removable insert
- Delamination
 - Thin-layer Silicone insert

4 holes: 6" dia x ~40.5" deep

Summary

- Built and experimentally validated three different acoustic sources that provide a collimated beam of low frequency.
- Beam collimation is maintained after passing trough an inhomogeneous scattering medium (concrete barrel).
- Gained insight into understanding foamed cements, by determining elastic properties and performing CT scans.
- Demonstrated imaging capabilities of the system, in both open- and cased-borehole, for different induced defects (groove, detachment, fluid-filled void pocket, casing).
- Determined spatial resolution as low as 3 mm.
- Long-term plan: refine and enhance the capabilities of the 3D imaging system for more realistic environments, and extend investigation range beyond the wellbore casing.

ENERGY Energy Efficiency & Renewable Energy

- Industry/academic engagement that is taking place under this project.
 - multi-lab project: LANL, SNL, NETLS, ORNL
 - West Virginia Univ, through NETL
 - industry: contacted an oil & gas company. They're interested in a future collaboration for "real-world use"

Future Directions

Energy Efficiency & Renewable Energy

Task		Year 1			Year 2				Year 3			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Phase 1 - Feasibility study												
Task 1 – Investigation of existing technology		M2										
Task 2 – Define metrics	M1											
Task 3 – Industry partners/technology maturation												
plan												
		oGo1	V									
Phase 2 - Evaluate method on more complex wellbore	2											
environments												
Task 1 - Channeling outside casing			M3									
Task 2 - Hardware/software refinement	1											
Task 3 - Speed-up measurement & analysis												
Task 4 - Method testing on more complex wellbore				M4								
environments	72											
Task 5 - Foamed cements manufacturing												
Task 6 - CT of foamed cements												
Task 7 - Acoustics metrics of foamed cements 🖉												
Task 8 - Tests on simulated wellbores with foamed				M4								
cements												
			GoN	oGo2	14	/						
Phase 3 - Extend method beyond wellbore												
Task 1 - Acoustic source improvement 💦 👞					M5							
Task 2 - Receivers enhancement												
Task 3 - Ruggedized tool							M7		6			
Task 4 - Image processing refinement						M6						
Task 5 - Technique refinement								M8				
Task 6 - Enhance capabilities for foamed cements												
							GoN	oGo3	4			
							GoN	oGo4	4			
Phase 4 - Technology Development and Verification												
Task 1 - Prototype development									M9			
Task 2 - Prototype verification at lab scale and in											M11	
field												
Task 3 - Hardware/software enhancement and										M10		
refinement												

Go/No-Go1 (end Q2Y1)

Tabulate commercial 3D imaging techniques for borehole integrity

no commercial technologies for high-res 3D imaging technology with similar depth of penetration (~3 m) and resolution (< 5 mm)
Go/NoGo2 (end Y1)

Detect defects at the cement-formation interface, with high resolution- defects detection at the cement-formation interface with a resolution of at least 5 mm

Go/No-Go3 (end Y2)

Tool survival in adverse conditions of corrosiveness, high temperature and high pressure (brines, 250°C, 45 kpsi)

- imaging system can survive in adverse conditions of temperature, pressure and corrosiveness

Go/No-Go4 (end Y2)

Imaging capabilities out in the formation, up to 3 meters

- defects/features (up to ~ 3m) can be resolved in the received signal