

Feasibility of EGS Development at Bradys Hot Springs, Nevada

Project Officer: Bill Vandermeer Total Project Funding: \$6.6M

November 13, 2017

Peter Drakos John Akerley Ormat Technologies, Inc.

Track 3 EGS Demonstrations

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance to Industry Needs and GTO Objectives

Project Goals:

- Improve the productivity (or injectivity) of a poorly performing well (15-12 ST1) in the Bradys Hot Springs Geothermal Field as measured by enhancing the hydraulic connection to the more productive areas of the geothermal resource.
- Utilize readily-available commercial technologies and cost-effective methodologies for reservoir stimulation. Optimize these technologies for a geothermal environment based on a careful characterization.

Project Impacts:

- Provide a proven methodology to enhance borehole injectivity/productivity
- Demonstrated the use of cross-industry technology in a geothermal well.
- The technology and methodologies will provide a valuable body of information that will inform future EGS projects.

2 | US DOE Geothermal Office eere.energy.gov

Methods/Approach

- Ormat— oversight, organization and scheduling
- GeothermEx, Schlumberger technical management, hydraulic testing, modeling
- University of Nevada, Reno geologic mapping, structural model, 3D geologic model, surface stress indicators
- USGS & Temple University stress field analysis and structural modeling
- University of Utah EGI tracer testing
- Schlumberger TerraTek petrology, stratigraphy, core testing
- GMI (USGS, Temple)— image log & failure analysis, stimulation planning
- LBNL seismic monitoring and analysis
- Hi-Q Geophysics surface seismic acquisition and interpretation
- LANL, NETL imaging, characterizing, and modeling of fracture networks in EGS
- Sandia National Laboratory borehole televiewer acquisition and support
- Temple University Interferometric Synthetic Aperture Radar and MEQ.

Methods/Approach: Bradys Overview

- Bradys Hot Springs located ~30km Northeast Fernley, NV.
- 15-12 ST-1 encountered low perm. but high temp. (~ 400° F)
- Geology potentially amenable to EGS stimulation
- Adjacent core hole BCH-3 found higher perm.; good core recovery

Methods/Approach: Stress Model and Natural Fractures

- Required stress state for observed failures (PTS, RHOB, BO, TC, Leak-off)
 - S_{hmin} gradient ~ 0.54-0.59 psi/ft
 - S_{Hmax} orientation N7° E±13°
 - S_{Hmax} gradient magnitude > 0.78 psi/ft
 - S_v gradient ~ 1.04 psi/ft
 - P_D gradient ~ 0.40 psi/ft
- Natural fracture orientations (BHTV + FMS)
 - Dips are near horizontal to more than 80°
 - Wide range of strikes
 - Steeper fractures are under-sampled due to near-vertical hole orientations
- Critical pressure for shear stimulation w/o frac'ing depends on fracture strength
 - If cohesion is zero, 30% can be stimulated without creating a hydrofrac
 - Stimulated fractures strike NNE-SSW
 - If cohesion is 500 psi, then <10% of fractures can be stimulated

Methods/Approach: Interpreting Opening Borhole Conditions

Methods/Approach: Zonal Isolation

- Packers divide the well into three intervals for stimulation.
- Depths were correlated from the drilling logs, SLB geophysical logs, and the two BHTV logs.
- Intervals chosen to isolate like lithologies/physical properties as much as possible, while also containing identified natural fractures (preferably well oriented).

Methods/Approach

Phase 2: Stimulation

Monitoring

- (1) a local surface + down-hole seismic network including downhole seismometers with continuous recording and triggered recording, (2) press-Temp monitoring in nearby wells such as BCH-3, (3) injection of tracer during the stimulation, (4) intermittent TPS logging, step rate testing and pressure fall-off testing, (5) Long term monitoring injection and InSAR.

Decision tree

Established to guide stimulation based on results of monitoring in real time

Numerical Modeling

- The stimulation strategy and decision tree were explored via numerical modeling to test the **concept** and **likelihood** and **timeline** for inducing shear failure of natural fractures and related permeability gain as measureable at the wellhead.
- Pre-conditioning injection provided initial data to benchmark the model and further explore the pre-stimulation conditions in the well.
- Pre-conditioning, Multi-stage/zone stimulation, Long-term injection
 - Key members of the project team were on-site for stimulation to enable real-time decision making based on data from monitoring and stimulation performance.

Methods/Approach: Stimulation Plan Decision Tree

Bracty's
Commercial Scale

Non-Commercial well
injectivity ~0.047gpm/psi
@ Flow ~ 85gpm

Commercial well; Flow rate ~ 1000gpm WHP ~ 100psi niectivity ~ 100pm/bsi

- A decision tree was established to guide stimulation based on results of monitoring in real time.
- The stimulation strategy and decision tree were explored via numerical modeling to test the concept, likelihood, and timeline for inducing shear failure of natural fractures and related permeability gain.
- An injectivity of 10 gpm/psi @
 1000gpm & WHP ~100psi was
 determine as an indication for a good
 commercial well, this injectivity
 represents the existing commercial
 wells in Bradys field.
- Once this injectivity will be achieved, an attempt to flow the well will be conducted to test the well productivity.

Technical Accomplishments and Progress

Original Planned Milestone/ Technical Accomplishment	Date Completed
Complete Feasibility Evaluation	Q1 FY2012
Detailed Stimulation Plan	Q2 FY2012
BLM Environmental Assessment	Q1 FY2013
Pre-Condition	Q2 FY2013
Multi-Stage Stimulation	Q4 FY2013
Post-Stimulation Injectivity Test	Q1 FY2014
Long-Term Injection	Q2 FY 2015

Technical Accomplishments and Progress

Zone 1 Stimulation

- Avg. injection rate ~378 gpm
- Avg. injectivity ~0.24 gpm/psi
- No MEQs detected
- Fall-off Analysis:
 - Closure pressure uncertain (~ 1058psia)
 - · Indeterminate flow regime after closure

Zone 2 Stimulation

- Max. injection rate ~1,100
- Avg. injectivity ~0.53 gpm/psi
- No MEQs detected
- Fall-off Analysis:
 - Closure pressure ~890 psia WHP (close to S_{hmin} from step-rate test)
 - Indication of pressure-dependent leak-off (natural fractures or dilated fissures)
 - After-closure response suggests radial flow

Zone 3 Stimulation

- Max. injection rate ~650 gpm
- Avg. injectivity ~0.45 gpm/psi
- No MEQs detected
- Fall-off Analysis:
 - ISIP ~ 935 psia WHP
 - Indication of pressure-dependent leak-off (natural fractures or dilated fissures)
 - After-closure response suggests radial flow

11 | US DOE Geothermal Office

Technical Accomplishments and Progress

- Surveys were run on June 2, 2016 when the well was taking 150-300gpm.
- The temperature survey shows that the maximum temperature was 407° F.
- The spinner surveys indicate that injection is leaving the well near 4300 ft. and 4700 ft. (near zones 2 and 3).

Research Collaboration and Technology Transfer

- This project is leveraged against several on-going synergistic projects including the InSAR and MEQ project and the PoroTomo project.
- Geomechanical analysis from this project has provided a regional analog to the FORGE project at Fallon, NV

Earthquake

Future Directions

- Ongoing work for this project includes a comprehensive report on the enhanced geothermal stimulation (EGS) activities that occurred in 2013. This project will include review of the decisions and documentation from the Phase 1 and Phase 2 of the Bradys EGS project. These tasks include:
 - Data Compilation and Initial Review
 - Interview Key Project Participants
 - Analysis of the EGS Stimulation Planning Process
 - Analysis of the Bradys EGS Stimulation in Well 15-12 ST1
 - Reporting, including lessons learned and suggestions for future EGS projects
- Continue coordination with on-going and new projects
 - InSAR and MEQ (monitors deformation responses to pumping and provides earthquake relocation)
 - PoroTomo (includes adding more pressure monitoring and injection experiments)
 - FORGE (lessons learned from the Bradys EGS stimulation)

Milestone or Go/No-Go	Status & Expected Completion Date
Stimulation Analysis Report	December 2017

14 | US DOE Geothermal Office eere.energy.gov

Summary

- The Bradys EGS Project Emphasizes the Importance of:
 - Diverse research team plus dedicated field operations partner
 - Integration of tectonics, geology, petrology, rock mechanics and stress
 - Well designed MEQ system that has been deployed early in the project
 - Protocol for monitoring and managing Induced Seismicity
 - Leveraging successes & lessons learned from Desert Peak experiences
- This project designed and implemented a well-monitored, multi-stage, multizone stimulation based on integrated geologic, geomechanical, and well characterization.
- The current work underway to fully analyze the stimulation will provide insights into the outcome of the 2013 activities and help guide future work at the FORGE site.