Geothermal Technologies Office 2017 Peer Review

Full-waveform inversion of 2010 walkaway VSP Data from Raft River geothermal site

Project Officer: William Vandermeer, Lauren Boyd Total Project Funding: \$250K November 13, 2017

Mandatory slide

Principal Investigator Lianjie Huang Los Alamos National Lab Track 3: EGS General R&D

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance to Industry Needs and GTO Objectives

ENERGY Energy Efficiency & Renewable Energy

- Challenge:
 - Build accurate velocity model using vertical seismic profiling data for high-resolution migration imaging
- Innovative aspects:
 - Employ full-waveform inversion to achieve high-resolution velocity model building.
- Impact on the following GTO's goals:
 - "Improving processes of identifying, accessing, and developing geothermal resources" and
 - "Overcoming technical obstacles and mitigating risk"
 - Accelerating a commercial pathway to and securing the future of Enhanced Geothermal Systems (EGS)

- Process raw vertical seismic profiling (VSP) data acquired at the Raft River EGS site in 2010
- Obtain up-going and down-going waves of the VSP data
- Apply newly developed least-squares reverse-time migrationguided full-waveform inversion algorithm to processed data to produce a high-resolution velocity model for migration imaging
- Perform reverse-time migration using the velocity model and up-going waves of the VSP data to obtain high-resolution subsurface images

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Build a velocity model	Used full-waveform inversion to build a velocity model	June, 2017
Conduct migration imaging	Applied reverse-time migration to the 2010 VSP data from Raft River EGS site	June, 2017

Mandatory- may utilize multiple slides

Energy Efficiency & Renewable Energy

Raft River Geothermal Field

Walkaway VSP data were acquired at Raft River EGS site using 40 geophones

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

FWI Velocity Model

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

PP Migration Image with 1D Velocity Model

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

PP Migration Image with FWI Velocity Model

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

PS Migration Image with 1D Velocity Model

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

PS Migration Image with FWI Velocity Model

- U.S. Geothermal Inc. provided the VSP data acquired at the Raft River EGS site.
- LBNL provided MEQ locations.
- The University of Utah helped with geologic interpretation.

Mandatory- may utilize multiple slides

ENERGY Energy Efficiency & Renewable Energy

- Project ended.
- Future applications of full-waveform inversion to other VSP data to build high-resolution velocity models for subsurface characterization and migration imaging.

Mandatory-may utilize multiple slides

- Full-waveform inversion is capable to build a high-resolution velocity model using VSP data.
- Migration imaging with FWI velocity models improves image resolution.
- The spatial resolution of the converted PS image is higher than that of the compressional PP image.
- Reflectors in migration images are consistent with geologic layers.
- Migration imaging reveals additional geologic layers.
- MEQ occurred around discontinuities of reflectors.