Geothermal Technologies Office 2017 Peer Review

Collab Task 5: Flow Test Characterization and Drillback (Experiment 1)

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Task 5 PI: Tim Johnson

EGS Collab

LIS. DEPARTMENT OF ENERGY Rene

Energy Efficiency & Renewable Energy

Objective: Provide high resolution THMC-G data sets for EGS model calibration and validation

Goals:

- quantify fracture network spatial heterogeneity
- constrain flow and heat transfer performance
- understand fracture stress-permeability response
- understand geophysical signatures of fracture generation and flow
- provide insight into coupled processes (i.e. cooling induced stress)

Achieved through a series of precisely controlled and comprehensively monitored flow tests, guided by model predictions, validated by post-test drill-back.

ENERGY Energy Efficiency & Renewable Energy

ENERGY Energy Efficiency & Renewable Energy

Downhole Monitoring System: Stimulation and Production Wells

• production well is equivalent, with backpressure and backflow control.

ENERGY Energy Efficiency & Renewable Energy

Downhole Monitoring System: Monitoring Boreholes

۰

ENERGY Energy Efficiency & Renewable Energy

Inter-well Uphole Flow, Pressure, and Temperature Control System

ENERGY Energy Efficiency & Renewable Energy

Sequence of well controlled and comprehensively instrumented flow tests: each with a specific objective

- 1) Step rate flow/pressure test (task 5a)
- 2) Constant rate tracer flow test (task 5a)
- 3) Long-term heat transfer test (task 5a)
- 4) Geophysical tracer test (task 5a)
- (Test 1-4 repeated for fracture 2, task 5b)
- 5) Dual fracture, inter-well flow test (tasks 5c and 5d)

Drillback Validation

1) Post-testing drillback validation (task 5e)

Test 1: Step Rate Flow/Pressure/Extension Test

Objective

- Investigate the relationship between fracture stress, aperture, and permeability.
- Determine pressure limits for future tests.

Description

 Precise step modifications in injection well pressure and production well backpressure.

Data sets

- Injection and production well: pressure, flowrate, interval temp, distributed temp., aperture
- Monitoring wells: active & passive seismic, distributed fiber temp. and strain, point temp., ERT

Data Usage

Validate hydro-mechanical models, constrain monitoring responses to aperture modulation

Settgast, Joe Morris

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

ENERG

Test 2: Constant flow rate tracer test

Objective

 Investigate relationship between pressure/aperture, residence time and flow path

Description

Constant pressure-flow tests with tracer tests (saline, fluorescent, DNA).

Data sets

- Inj./Prod. wells: pressure, flowrate, interval temp, distributed temp., aperture, tracer concentration
- Monitoring wells: active & passive seismic, distributed fiber temp. and strain, point temp., ERT

Data Usage

 Validate flow-path predictions, support heat transfer modeling, evaluate monitoring responses

Courtesy Pencheng Fu, Randy Settgast, and Joe Morris

-0.4 L/min -1.5 L/min -6.0 L/min Bud Johnson, Phil Winterfield and Yu-Shu Wu

Objective

 Comprehensive heat transfer performance data: thermo-mechanical response, effects of cooling on stress, aperture and permeability

Description

 Long term, constant rate, cold-water circulation test with tracers

Data sets

- Injection and production well: pressure, flowrate, interval temp, distributed temp., aperture, tracer conc. at production
- Monitoring wells: Distributed temp. and strain, point temp., ERT, active seismic

Data Usage

 Validate THM-G model predictions. Validate monitoring capability predictions.

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Courtesy Pencheng Fu and Joe Morris

Test 4: Geophysical Tracer Test

Objective

 Image fracture flow paths vs. stress/aperture

Description

 Saline/electrically anomalous fluid circulation + tracers

Data sets

- Injection and production wells: pressure, flowrate, interval temp, distributed temp., aperture, tracer conc. at production
- Monitoring wells: Time-lapse ERT, point and distributed temp. and strain.

Data Usage

 Validate residence time, flow path predictions. Validate monitoring capability predictions.

ERT Feasibility Modelling

Test 5: Combined and Zonal Isolation Flow Tests

Objective:

- Predict, demonstrate, and evaluate isolation of fracture zones and simultaneous flow and pressure control.
- Compare isolated and non-isolated behavior.

Description:

 Model driven combined and independent pressure and flow manipulation of fracture zones

Data sets:

- Pressure, flowrate, temp in each zone, aperture in zone 1.
- Monitoring wells: cross-hole seismic, passive seismic, distributed fiber temp. and strain, point temp., ERT

Data Usage

- Hydro-mechanical model validation of multi-fracture flow and control.
- Monitoring response validation

Technical Accomplishments and Progress

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Participate in kickoff meeting; task 5 lead presentation & team feedback	Accomplished Original	3/31/17
Task 5 Workplan (full team collaboration) for incorporation into PMP	Accomplished Original	6/30/17
Deliver to LLNL : task 5 infrastructure and equipment requirements, monitoring wellbore & spacing req's for ERT	Accomplished Original	7/31/17

Research Collaboration and Technology Transfer

U.8. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Roland Horne (Stanford U.) DNA Tracers

Bud Johnson (NREL), Phil Winterfied and Yu-Shu Wu (CSM) Chemical tracer analysis

Tom Doe and Mark McClure Analysis of fracture flow and leak-off

Future Directions

Milestone or Go/No-Go							Status & Expected Completion Date										
Complete flow tests for Experiment 1, fracture set 1 and submit data to						September 30, 2018											
the EGS Collab database																	
🖶 🖹 Title)17	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018	Jun 2018	Jul 2018	Aug 2018	Sep 2018	Oct 2018	Nov 2018	Dec 2018	Jan 2019
 1) Drill & Core Log Orthogonal Top (OT) Monitoring Borehole 		King; Ro	ggenthen														
 2) Drill & Core Log Orthogonal Bottom (OB) 		King	Condon														
Monitoring Borehole		- King	Condon														
 3) Drill & Core Log Production (P) Borehole 		🔵 Co	ondon														
 4) Logging of OT, OB, & P 		UI	rich; Roggent	hen													
 5) General Basic Safety Training 		0 н	lorner; Thoml	e; Johnson; \	White; Smith; F	Frash; Foris;	Feldman; Kno	ox, J.; Schwe	ring; Robertso	n							
 6) 4850 Visit & Core Logging Training 	2	0 1	Horner; Thom	le; Johnson;	White; Smith;	Frash; Foris;	Feldman; Kn	ox, J.; Schwe	ering; Robertso	n							
 7) Drill Stimulation (S) Borehole 		\bigcirc	Frash; River	s													
 8) Logging of S & Notch Stimulation Borehole 		0	Ulrich; Robe	ertson													
 9) Drill Parallel Shallow Top (PST) Monitoring Borehole 		(Frash														
 10) General Basic Safety Training 			Ajo-Fran	klin; Burghar	dt; Blankensh	ip; Guglielmi	Herrick										
 11) 4850 Visit & Core Logging Training 	2		Ajo-Fra	nklin; Burgha	rdt; Blankensh	nip; Guglielm	i; Herrick										
 12) Drill Parallel Shallow Bottom (PSB) Monitoring Borehole 			 Horne 	r; Roggenthe	'n												
 13) Drill Parallel Deep Top Monitoring Borehole 	2		Hor	ner; Feldmar	n												
 14) Drill Parallel Deep Bottom Monitoring Borehole 			 F	eldman													
 15) Drill Parallel Deep Bottom Monitoring Borehole (Cont 1) 				Blankenship													
 16) Drill Parallel Deep Bottom Monitoring Borehole (Cont. 2) & Demob 				Smith; Bla	inkenship												
 17) Complete Geophysical Logging 				Ulrich; F	Robertson												
 18) Seismic Characterization 				 Knox, 	H.; Knox, J.; S	Schwering											
 19) Seismic Characterization 				🔵 Kno	x, H.; Schweri	ng; Roggent	hen										
 20) Assemble Monitoring Packages 				Stric	kland; Ajo-Fra	anklin; Johns	on; Robertsoi	n; Thomle									
21) Grouting					King; Knox, H	I.; Foris; Stric	kland; Robert	tson; Johnsoi	n								
 22) Finish Seismic Characterization 					 Knox, 	H.; Schweri	ng; Robertsor	n; Ulrich									
 23) Preparation for Stimulation 1 					🔵 Co	ook; Guglieln	ni; Herrick; Ing	graham; King	Strickland; V	ermeul							
 24) Baseline ERT & Set-up Monitoring (Interference Test) 					0 Tr	nomle; Johns	on; Robertso	n; Ulrich									
 25) Stimulation 1 & Monitoring 					•	King; Blanke	enship; Cook;	Guglielmi; He	errick; Ingraha	m; Johnson; /	Ajo-Franklin; ł	<neafsey; kno<="" td=""><td>x, H.; Lee; R</td><td>obertson; Stric</td><td>kland; V erme</td><td>eul</td><td></td></neafsey;>	x, H.; Lee; R	obertson; Stric	kland; V erme	eul	
 26) Find Fracture & Conduct 4.5 						King; Co	ok; Herrick; K	(nox, H.; Ulric	ch; Strickland;	Vermeul							
 27) Flow Test 1 								Vermeul; S	strickland; Kno	x, H.; Thomle	e; Johnson						
 28) Stimulation 2 & Monitoring 	0							King; C	ook; Guglielmi	Herrick; Ingr	raham; Johns	on; Ajo-Frankl	in; Knox, H.;	Robertson; St	rickland; Verr	neul	
 29) Find Fracture & Conduct 4.5 								🔵 King	; Cook; Herric	k; Knox, H.; l	Jlrich; Strickla	and; Vermeul					
• 30) Flow Test 2										Vermeul; Stri	ckland; Knox,	H.; Johnson;	Thomle				
31) Combined System Characterization										Verme	ul; Strickland;	Knox, H.; Her	rick; Cook; G	uglielmi; Ingra	aham; Ajo-Fra	nklin; Johnso	n
 32) Combined System Characterization w/ Zonal Isolation 											/ermeul; Stric	kland; Knox, H	I.; Herrick; C	ook; Guglielmi	; Ingraham; A	jo-Franklin; Jo	ohnson
• 33) Drillback	X																
16 US DOE Geothermal Office															e	ere.ene	rgy.gov

Task 5 will provide:

Precisely controlled and comprehensively monitored flow tests, guided by model predictions, validated by post-test drill-back.

- Enables assessment of THMC-G predictive capability: Critical for validation of EGS computational tools
- Fractures will be characterized by:
 - dimension, geomechanical properties, hydrogeologic properties, heat transfer properties, and geophysical properties
- Enables assessment of field tools for characterization
- Comprehensive THMC-G community data set to facilitate advancement of EGS systems will be made generally available