

### **EXPANDING THE BIOECONOMY**

Date: Wednesday, 11 July 2017 Venue: SHERATON PENTAGON CITY, Washington, DC

> ELLEN B STECHEL Arizona State University ASU-LightWorks\*

Bioeconomy 2017: Domestic Resources for a Vibrant Future

Beyond Biofuels: Leveraging the Bio-economy to Manage Carbon, Open Markets, and Increase Global Economic Efficiency

> \*ASU campus wide initiative on light inspired research for energy and sustainability, impact and scale

BIOECONOMY JULY 2017 | 11-12 JULY 2017 WASHINGTON, DC | ELLEN B STECHEL



# **REFRAMING THE FUTURE OF CARBON IN SOCIETY:**

"Every problem has in it the seeds of its own solution. If you don't have any problems, you don't get any seeds." Norman Vincent Peale (1898 - 1993), American Author

"Each problem has hidden in it an opportunity so powerful that it literally dwarfs the problem. The greatest success stories were created by people who recognized a problem and turned it into an opportunity."

Joseph Sugarman, American Author

"We can't solve problems by using the same kind of thinking we used when we created them." - Albert Einstein

"Inventing is seeing the same problem that everyone around the world is seeing, but looking at it differently." Dean Kamen, Most Known as the Inventor of the Segway





#### TOO MUCH OF A GOOD THING CAN BE BAD -- SOURCES EXCEED SINKS

#### 2040 $\pm$ 310 GtCO<sub>2</sub> 1750-2011 $\rightarrow$ 880 $\pm$ 35 additional GtCO<sub>2</sub> Problem: Increasing content in the atmosphere & surface ocean



We could actively mine the excess CO<sub>2</sub> in the atmosphere as a resource 1300 Gt-CO<sub>2</sub> at \$10 per tonne profit would be \$13T.

~3100 GtCO<sub>2</sub> total in the atmosphere Was ~ 2200 Gt pre-industrial Beyond ~3500 Gt is considered too much >450 ppmv **Proven fossil reserves:** ~2800 Gt potential CO<sub>2</sub> emissions Cumulative budget left < 900 GtCO<sub>2</sub> ~4.25% yoy decrease in net 30% in 8 yrs and 50% in 16 yrs

BIOECONOMY JULY 2017 | 11-12 JULY 2017 WASHINGTON, DC | ELLEN B STECHEL



# **THINKING DIFFERENTLY ABOUT CO<sub>2</sub>**

Managing as a resource rather than waste to just get rid of or worse a pollutant

**REDUCE, REUSE, DOWN-CYCLE, <u>RECYCLE</u>, DISPOSE WHAT'S LEFT ONLY AS A LAST RESORT** 

Automobiles are the most recycled consumer product in the world today. There are >9,000 vehicle recycling facilities around the US. \$32B/yr in sales; >140,000 employed.



"Automotive recycling has evolved into a sophisticated market and technology-driven industry that constantly changes to keep abreast of innovations in automotive technology and manufacturing techniques." Automotive Recyclers Association





# **RECYCLING CO<sub>2</sub> INTO THE PRODUCT IT CAME FROM:** NO SUCH THING AS WASTE ONLY WASTED RESOURCES

- **MINOR DISTINCTION WE DO HAVE DECARBONIZE PRIMARY ENERGY**
- WE DO NOT HAVE TO DECARBONIZE THE ENERGY SYSTEM
- TODAY'S PRIMARY ENERGY IS REALLY STORED ANCIENT SUNLIGHT AND SEQUESTERED CARBON
- **BIOMASS IS STORED MODERN SUNLIGHT AND FIXED CARBON**









- Prehistoric biomass, processed for millions of years: ancient stored solar energy
- Accelerate the natural process to make new energy carriers from modern sunlight: i.e., Solar fuels and materials.

LIQUID HYDROCARBONS ARE ENERGY DENSE AND CONVENIENTLY STORED AND TRANSPORTED ECONOMICALLY OVER LONG DISTANCES, TRILLIONS OF \$ OF INFRASTRUCTURE

THE QUESTION WE SHOULD BE ASKING IS WHAT WILL BE THE ENERGY CARRIERS OF THE FUTURE? (H<sub>2</sub>, CO, CH<sub>3</sub>OH, NH<sub>3</sub>, DME, OME, CH<sub>4</sub>)

ELECTRICITY IS BEST USED AS IT IS PRODUCED – BUT NOT EASILY STORED ESPECIALLY FOR SEASONAL SHIFTS







#### **REFRAMING: CREATING VALUE FROM AND SINKS FOR THE EXCESS CO<sub>2</sub>** IN THE ATMOSPHERE

Economically viable carbon-based innovation ecosystem in a few decades – in addition to – not instead of, not part of decarbonizing primary energy?

|   | Decarbonization<br>Energy Efficiency<br>Renewables for<br>Primary Energy                                                       | Adaptation<br>Managing<br>Impacts of<br>Climate Change | Capture, Reuse,<br>and Recycle<br>Transforming<br>into Valuable<br>Products                      | Capture and<br>Disposal<br>Long-Term<br>Sequestration |  |
|---|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
|   |                                                                                                                                | Climate<br>Change                                      | Bioeconomy                                                                                       | 瓜                                                     |  |
| r | Progress but<br>Not Fast Enough,<br>nostly in electricity                                                                      | Increasingly<br>Necessary but<br>expect suffering      | Seeking added value,<br>Impact transportation &<br>Manufacturing<br>Can also address "overshoot" | Verified, Safe<br>and Secure<br>Disposal              |  |
|   | Multi Gt-CO <sub>2</sub> /yr scale industry: steel, concrete, agriculture, coal, oil,<br>and gas, and plastic is getting close |                                                        |                                                                                                  |                                                       |  |
|   | BIOECONOMY JULY 2017   11-12 JULY 2017 WASHINGTON, DC   ELLEN B STECHEL                                                        |                                                        |                                                                                                  |                                                       |  |



**BIOECONOMY JULY 2017** 



#### **NET NEUTRAL: CLOSING THE CYCLE; RESTORING THE CARBON BALANCE**



11-12 JULY 2017 WASHINGTON, DC

**ELLEN B STECHEL** 





#### **NET NEGATIVE: CARBON IS THE MOST VERSATILE OF ALL THE ELEMENTS**



**Essential for life**, ensures a livable climate via the GH effect of CO<sub>2</sub>, stored energy that we have been exploiting, greatest number of compounds more than any other element except hydrogen, superior properties. Expect cost breakthroughs on carbon composites from 3D printing.



ARIZONA STATE UNIVERSITY



#### SOLAR THERMOCHEMICAL STORAGE AND SPLITTING OF WATER OR CO<sub>2</sub>





# THE ADVANTAGE OF PRODUCING SYNGAS (CO & $H_2$ )



Source: P.L. Spath and D.C. Dayton, Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomas-derived syngas, National Renewable Energy Laboratory, NREL/TP-510-34929, December, 2003.

- Can serve as a universal intermediate
- Can unite fossil and biomass with direct solar technologies
  - Bridge old energy to new energy
  - Make more product for the same feedstock – no process CO<sub>2</sub>

e.g. Solar reforming of CO<sub>2</sub> and natural gas (or biogas)

Solar gasification of biomass

Directly splitting water and CO<sub>2</sub>, thermochemical, electrolysis, photo-electro-chemical, thermoelectro-chemical

#### Aim for high carbon atom efficiency and a smoothed transition

BIOECONOMY JULY 2017 | 11-12 JULY 2017 WASHINGTON, DC | ELLEN B STECHEL





# **Coccolithophores** produce an exoskeleton made of CaCO<sub>3</sub> plates (i.e., 'coccoliths').

- One celled marine plants
  - Very widely distributed globally
  - Leading calcite producers in the ocean
  - Ideal system for secure biomineralization of CaCO<sub>3</sub>



#### Kevin Redding and Bruce Rittmann



ARIZON

## WE CAN COUNT ON THE MIRACULOUS LEARNING CURVE



If start at 0.1 Mt/yr If grow at 25%/yr Then 41 years to hit 1 Gt/yr Or ~13 doublings If 16% learning Fall 90%

Not long ago people were still saying solar is niche and always will be. Direct air capture and direct conversion should be able to get on similar learning curves.



ARIZONA STATE UNIVERSITY

LET'S TOGETHER CREATE A SUSTAINABLE CARBON-BASED FUTURE WITH AND WITHOUT BIOLOGY

# The best way to predict the future is to create it.

Peter Ducker

a quotefor cy



RIZONA STATE UNIVERSITY

I skate to where the puck is going to be and not where it has been. Wayne Gretzky



Thank you the audience for your attention and Dave Babson for the kind invitation Grateful acknowledgments to colleagues Gary Dirks, Klaus Lackner, James Miller, Bruce Rittmann, and Elisa Graffy, and many more