

Production of Naturally Occurring Carboxylic Acids from Anaerobic Digestion of Organic Materials

Cesar B. Granda, Ph.D. Chief Technology Officer Earth Energy Renewables Bryan, TX

Washington DC July 11th, 2017

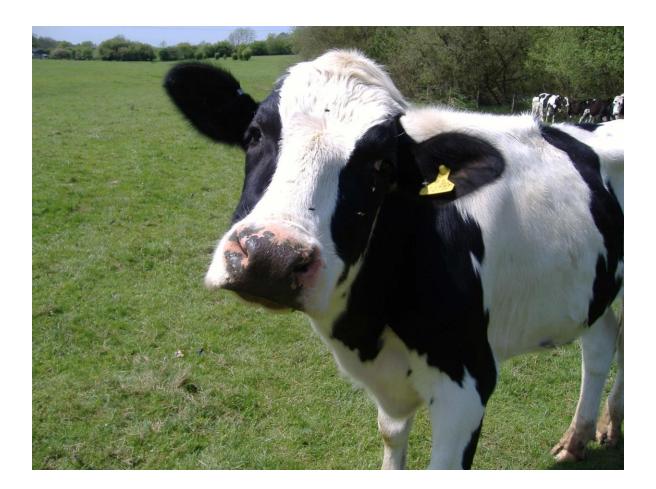
Typical Bioconversion Processes for Biofuels and Chemicals

Fermentation

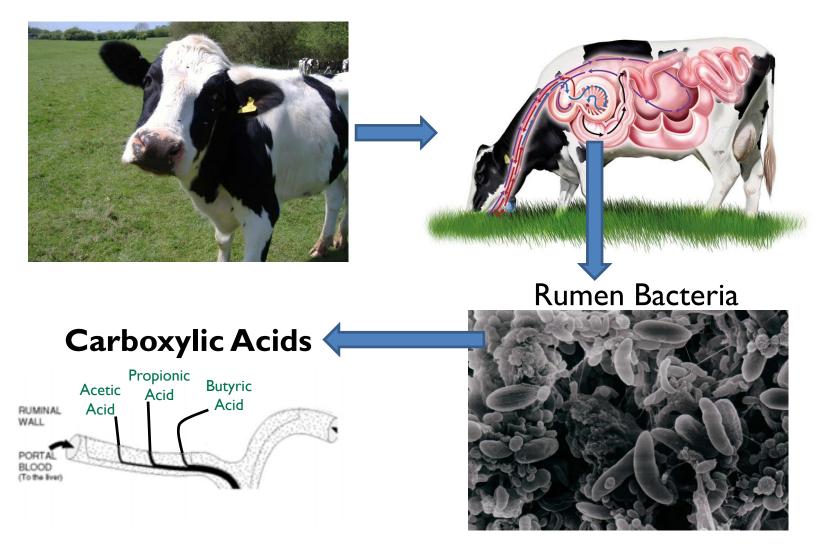
Typical Bioconversion Processes for Biofuels and Chemicals Pyrolysis/Gasification

Most Common Installed Bioconversion

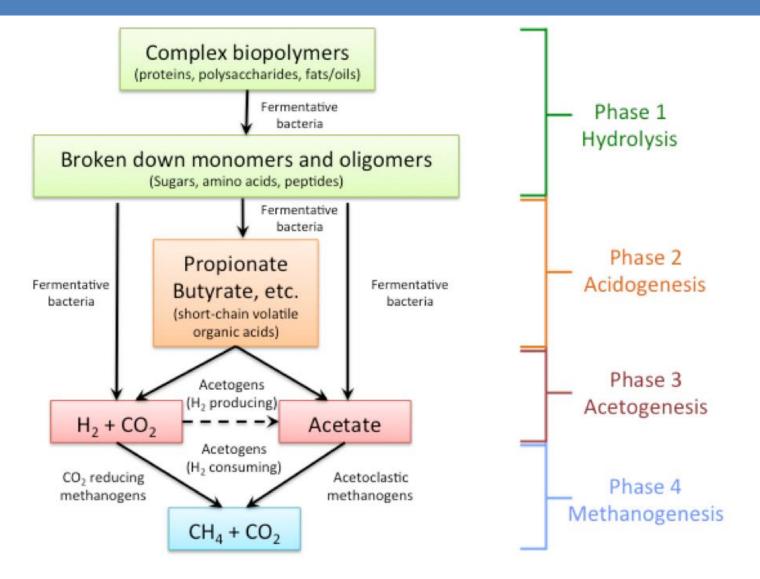
Waste Water Treatment and Anaerobic Digestion

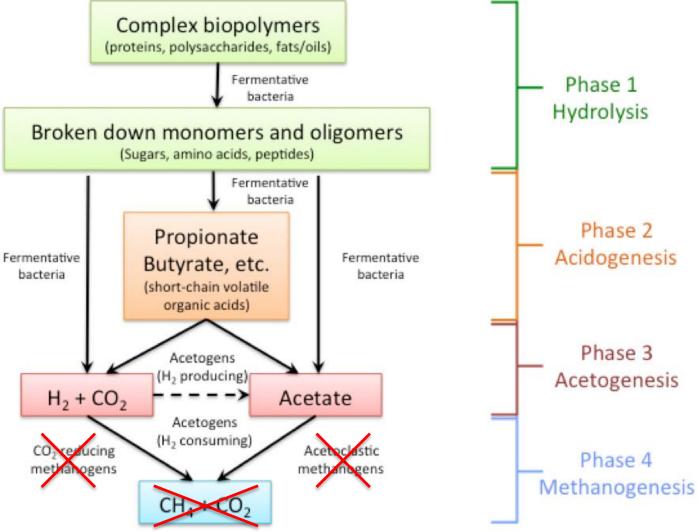


Most common Bioconversion Process


Advantages of Anaerobic Digestion

- Robust non-sterile mixed cultures
- Inexpensive
- Very feedstock flexible
- Natural




Product from AD in herbivores

Anaerobic Digestion Phases

Nature knows best: CH₄ production is avoided or minimized

We have developed a novel but simple and low-cost process to convert bio-degradable materials into high value carboxylic acids

EER CONVERSION

Modified Anaerobic Digestion

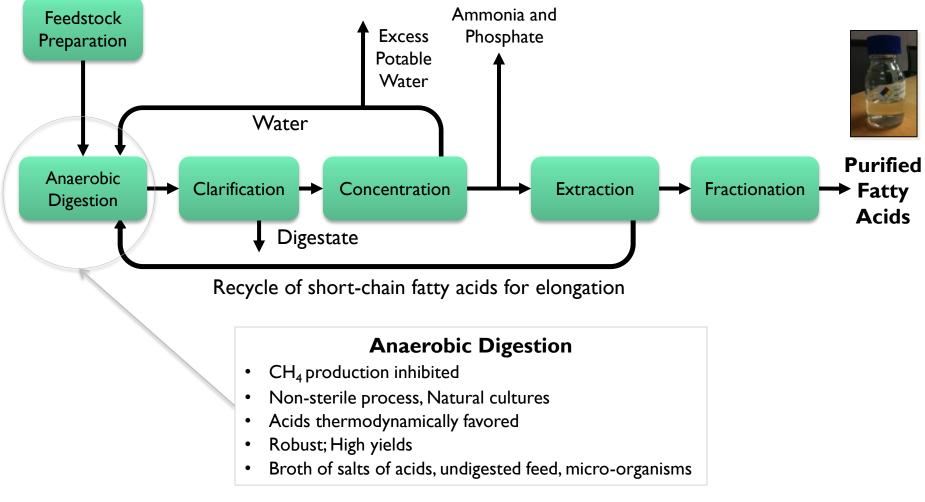
Proprietary Extraction

 \rightarrow

REFINING PROCESS

PRODUCTS

C₂ – C₈ Fatty Acids Short- & Medium-Chain Fatty Acids


- Acetic acid (C2)
- Propionic acid (C3)
- Butyric acid (C4)
- Isobutyric acid
- Valeric acid (C5)
- Iso-valeric acid
- Caproic acid (C6)
- Heptanoic acid (C7)
- Caprylic acid (C8)

Derivatives

INTERMEDIATES → **DERIVATIVES**₀

Anaerobic digestion is the heart of the EER process

Innovative integration of mature, well-understood technologies

Feedstock Flexible = Globally Replicable

•Alfalfa

Over 30 Feedstocks Tested

- •Food wastes
- •White office paper
- •Paper-mill fines
- •Sugarcane bagasse
- •Pineapple waste
- •Glycerol
- •Raw Glycerin
- •Corn Stover
- •Rice Straw
- Cotton gin trash
- •Water hyacinth
- •Switchgrass
- •MSW-Wet organics
- •Poplar Wood
- Sugarcane molasses

- •Sorghum stalks
- Municipal sewage sludge
- •Raw sewage

- •Cellulosic municipal solid waste
- •Bio-sludge (from chemical plant WWTP)
- Chicken manure
- •Cattle manure
- •Sugar beet pulp
- Lipid-extracted micro-algae
- •Whole micro-algae
- •Pulp-mill molasses (wood molasses)
- •Orange peels
- •Oil Palm empty fruit bunch
- •Palm oil mill effluent

Feedstock Flexible = Globally Replicable

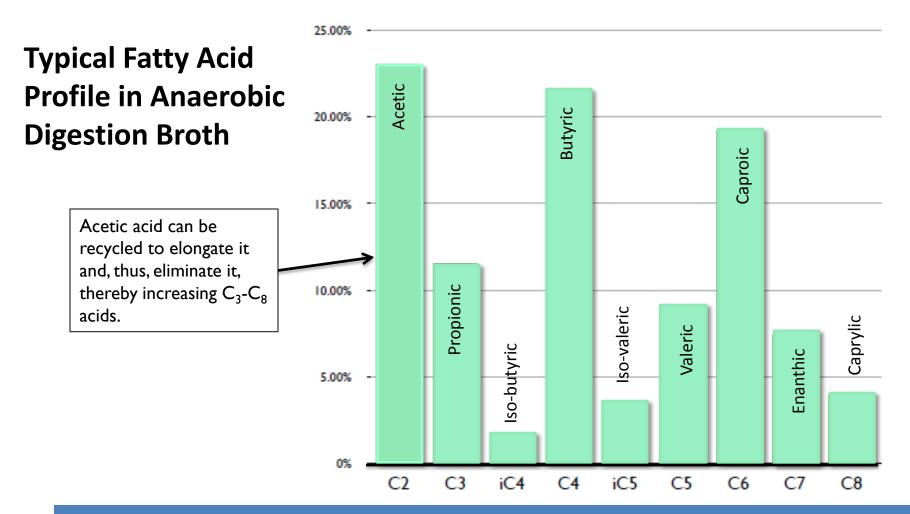
•Alfalfa

Over 30 Feedstocks Tested

•Food wastes

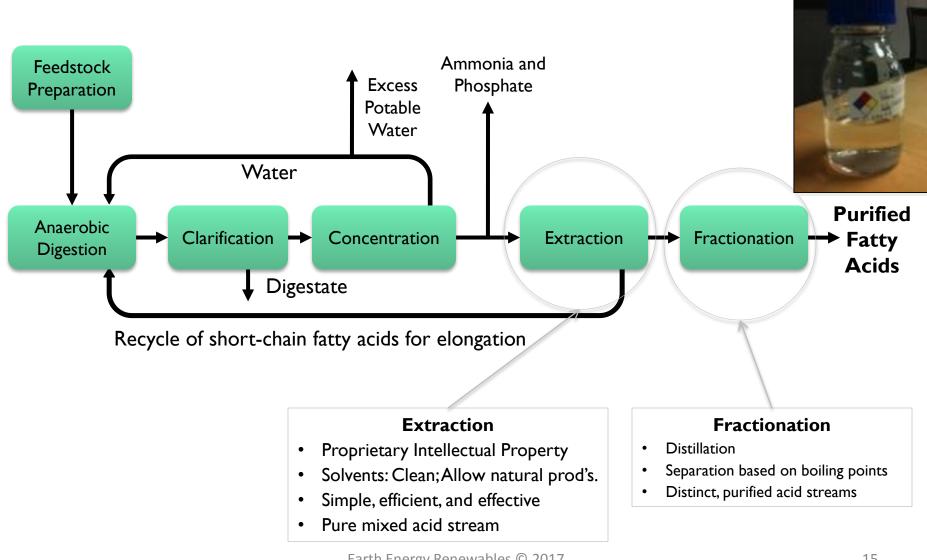
- •White office paper
- •Paper-mill fines
- •Sugarcane bagasse
- •Pineapple waste
- •Glycerol
- •Raw Glycerin
- •Corn Stover
- •Rice Straw
- Cotton gin trash
- •Water hyacinth
- Switchgrass
- MSW-Wet organics
- •Poplar Wood
- Sugarcane molasses

- Sorghum stalks
- Municipal sewage sludge



- •Raw sewage
- •Cellulosic municipal solid waste
- •Bio-sludge (from chemical plant WWTP)
- Chicken manure
- •Cattle manure

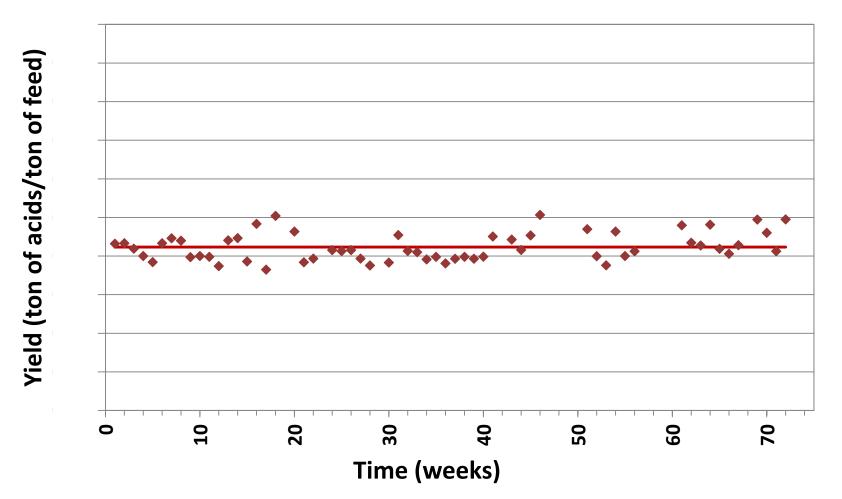
- •Sugar beet pulp
- •Lipid-extracted micro-algae
- •Whole micro-algae
- •Pulp-mill molasses (wood molasses)
- •Orange peels
- •Oil Palm empty fruit bunch
- •Palm oil mill effluent

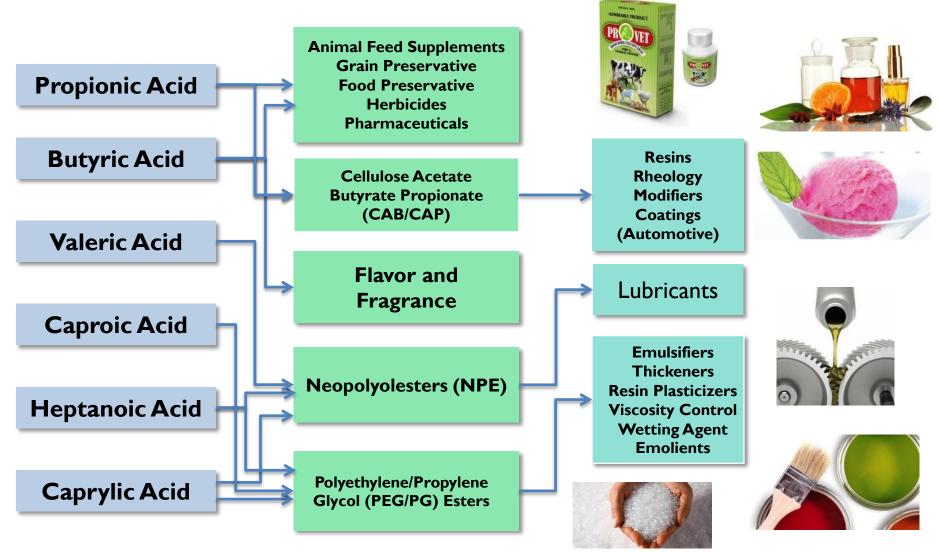

Distribution of $C_2 - C_8$ acids from food waste (demo)

The product distribution can be shifted to shorter or higher average chain lengths by employing different feedstocks or modifying operating conditions.

Earth Energy Renewables © 2017

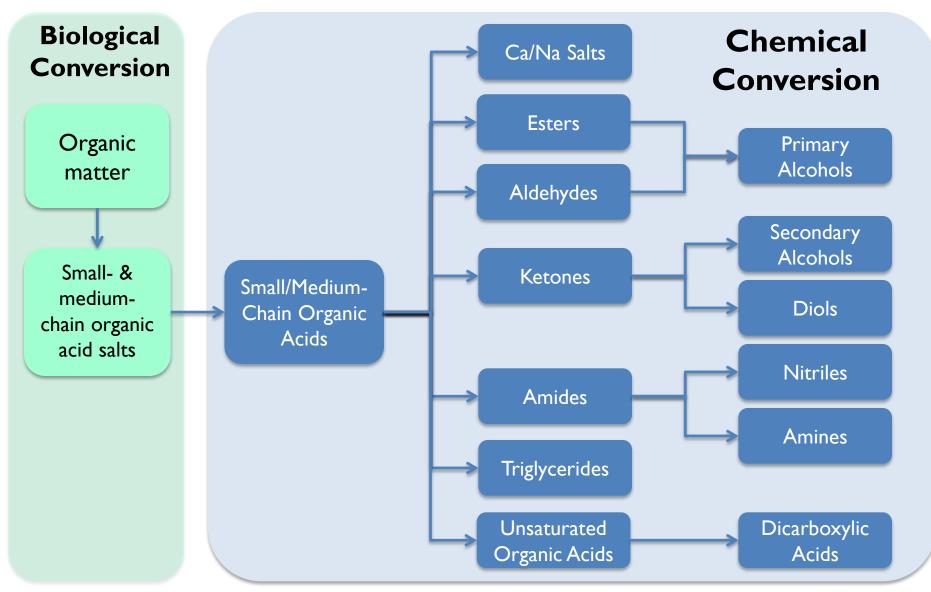
Recovery of acids by extraction and fractionation


Demonstration Plant


- Field Scale
- Demonstration and Pilot scale operations of process
- Indoor & outdoor operations
- Extensive laboratory capabilities
 - I7,000+ hours of operation (fermentation/clarification)

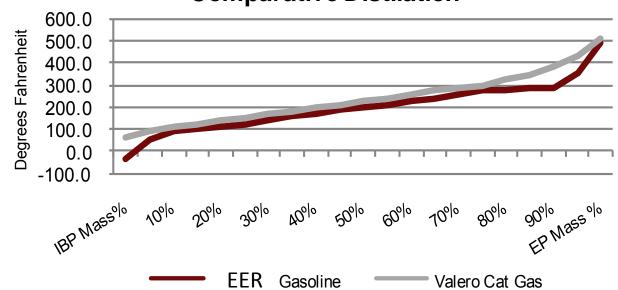
Demostration scale anaerobic digester produced steady and high levels of S/M-chain fatty acids over 72 weeks (12,000 h) of operation

3 TPD (Feed) Demonstration Plant



Small- and medium-chain carboxylic acids are used in many applications and sold into both commodity and specialty markets

Carboxylic acids are very versatile chemicals

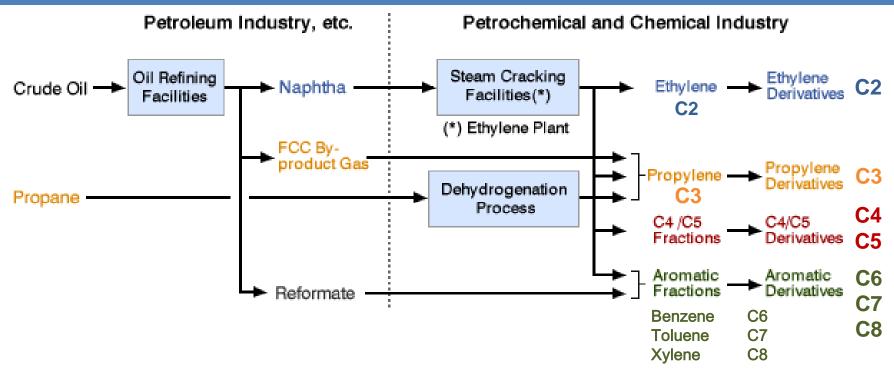

Bio-chemical Platform

19

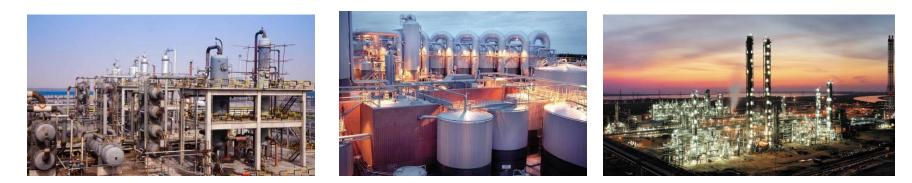
Biofuels

92 octane gasoline based on tests done by Valero

Comparative Distilation


- Initial gasoline produced in Terrabon labs has a distillation range very similar to cat cracker gasoline with 120,000 Btu/gal (35,000 kJ/L)
- Testing was performed in conjunction with CRI Catalysts

Biofuels


JP-8 jet fuel meets or exceeds current industry standards

Sample & Feedstock	MIL-DTL- 83133G Specification Requirement	EER's JP-8 from MSW	JP-8 Petroleum 4751
Fuel Property			
Aromatics, vol%	≤ 25	16.7	18.8
Olefins, vol%	≤ 5	0.6	0.8
Heat of Combustion,			
MJ/Kg	≥42.8	43.1	43.3
Distillation			
IBP (°C)		156	159
10% Recovered (°C)	≤ 205	172	183
20% Recovered (°C)		176	189
50% Recovered (°C)		189	208
90% Recovered (°C)		236	244
EP (°C)	≤ 300	260	265
Residue, % vol	≤ 1.5	1.4	1.3
Loss, % vol	≤ 1.5	0.6	0.8
Properties			
Flash Point (°C)	≥38	52	51
Freeze Point (°C)	≤ -47	-63	-50
API Gravity @ 60 °F	37.0-51.0	46.6	44.4
Density @ 15 °C	0.775 - 0.840	0.794	0.804

A true chemical platform (Petroleum)

FEEDSTOCK \rightarrow REFINING PROCESS \rightarrow INTERMEDIATES \rightarrow DERIVATIVES

A true chemical platform (EER Technology)

EER CONVERSION

Modified Anaerobic Digestion

Proprietary Extraction

 \rightarrow

REFINING PROCESS

PRODUCTS

C₂ – C₈ Fatty Acids Short- & Medium-Chain Fatty Acids

- Acetic acid (C2)
- Propionic acid (C3)
- Butyric acid (C4)
- Isobutyric acid
- Valeric acid (C5)
- Iso-valeric acid
- Caproic acid (C6)
- Heptanoic acid (C7)
- Caprylic acid (C8)

Derivatives

Markets for derivatives

	Flavor & Fragrance	Animal Feeds	Feed & Food Preservatives	Personal Care, Cosmetics	Herbicides, Pesticides, Fungicides	Pharma	Cleaners, Detergents	Surfactants	Coatings, Adhesives	Plasticers	Solvents, Siccatives	Plastics , Resins	Lubricants	Fuels
Acids/salts	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Esters	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
1° alcohols	\checkmark			\checkmark			\checkmark		\checkmark			\checkmark		\checkmark
2° alcohols					\checkmark	\checkmark					\checkmark			\checkmark
Ketones						\checkmark					\checkmark			
Dicarboxylic acids				\checkmark						\checkmark		\checkmark	\checkmark	
Diols				\checkmark	\checkmark							\checkmark	\checkmark	
Amides						\checkmark					\checkmark	\checkmark		
Amines, Nitriles						\checkmark					\checkmark			
Olefins							\checkmark					\checkmark		
Alkanes													24	\checkmark

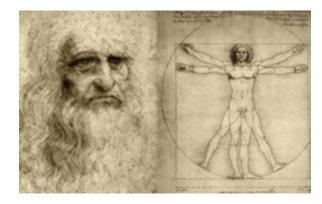
Markets for derivatives

	Flavor & Fragrance	Animal Feeds	Feed & Food Preservatives	Personal Care, Cosmetics	Herbicides, Pesticides, Fungicides	Pharma	Cleaners, Detergents	Surfactants	Coatings, Adhesives	Plasticers	Solvents, Siccatives	Plastics , Resins	Lubricants	Fuels
Acids/salts	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Esters	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
1° alcohols	\checkmark			\checkmark			\checkmark		\checkmark			\checkmark		\checkmark
2° alcohols									\checkmark			\checkmark		
Ketones		>\$500 Billion						\checkmark						
Dicarboxylic acids										\checkmark	\checkmark			
Diols			Global Market						\checkmark	\checkmark				
Amides						\checkmark					\checkmark	\checkmark		
Amines, Nitriles						\checkmark					\checkmark			
Olefins							\checkmark					\checkmark		
Alkanes													25	\checkmark

Modest capital requirements together with low operating costs create the potential for substantial investment returns

EER Short- and Medium-Chain Carboxylic Acid Plants										
Greenfield Builds										
Feed Input, dry tons/day	30	80	600							
Feedstock cost, \$/dry ton (assume co- location)	\$0	\$0	\$0							
Average Product Price, \$/kg	\$3.00	\$3.00	\$2.00							
Total OPEX (no depreciation), \$/yr	\$3,332,740	\$6,300,452	\$23,920,000							
EBITDA, \$/yr	\$9,369,533	\$27,572,275	\$145,444,000							
ROI based on EBITDA	43.0%	61.7%	72.4%							
Payback time based on EBITDA	2.3	1.6	1.4							
Production cost (no dep) \$/ton	\$716	\$507	\$257							

• Estimates are based on a greenfield build. Availability of land, infrastructure at feedstock partner facilities offer potential opportunities to reduce capex.


• Co-location with a feedstock provider will significantly reduce capital requirements.

- C2-C8 Carboxylic Acids \rightarrow Hundreds of valuable products
- Renewable Wet or Dry Organic Feedstocks
- Low-cost Feedstocks and Process (highly profitable)
- Pure and Green EU/US Natural Bio-Based Chemicals
- Funding already organized to attain commercial scale

"Simplicity is the ultimate sophistication" Leonardo Da Vinci

Earth Energy Renewables © 2017