

30 Under 30 2014

Funding 2014

UNIVERSITY OF

SOUTH FLORIDA

Problem/Opportunity

234 MM tons/year of Garbage

- 2,450 Landfills in US
- 20% of Human Source of Methane
- Requirement to Capture and Mitigate
- RFS Increase in RVO
- Waste Industry Consumes ~ 4% US Diesel consumption
- Ag Industry Consumes ~3% US Diesel Consumption
- AD Technology Advancements (~1,500 projects operating in US)

Total US Biogas Generation Rate ~ 800,000 SCFM

What's the best use of this energy resource?

- Electricity generation
- Biomethane
- Gas to Liquids

Focus and Technology

Demonstrate small scale GTL in economical and profitable manner

Tri-reforming:

- Minimize cleanup and pretreatment process
- Less energy consumption
- Produce high quality syngas ($H_2:CO \sim 2$)

Tri-reforming of LFG

Catalyst Bed temp. (°C)	GHSV (h⁻¹)	CH₄ conv. (%)	CO₂ conv. (%)	H ₂ :CO
770-810	30,000	92-99	52-72	1.70-2.23

Catalyst Optimization

- Thermally Stable
- High Surface Area
- Coke Resistant
- High OSC
- **Excellent Redox Properties**
- High Dispersion
- **Excellent Selectivity**
- High Activity
- Economical

Low Pressure Drop

FTS Eggshell Catalyst

- Overcome mass and heat transfer limitations
- Selective product distribution in middle distillate region
- Avoid wax production

CO % Conv	LFG Energy Recovery	Selectivity (%)		
	In Liq Fuel (%)	C ₁₋₄	CO ₂	C ₅₊
71	40	43.7	1.4	55.0

Benchscale TRIFTS Unit

- Optimize process conditions
- Facilitate Pilot/Demonstration Design
- Plug bench data into ASPEN
- Update full scale technoeconomic analysis

<u>Fuel Analysis</u>

- Low aromatics improve net heat of combustion and reduce soot
- Isomers improve cold temp properties
- Further reduce olefin content w/ addition of catalyst promoters

12

10

8

6

4

2

Wt %

- Excellent middle distillate boiling point distribution
- Control phase separation temp to fractionate light ends
- Final boiling point aligns with commercial diesel

	Aromatics	0.02	39.48		
addition	Cyclics	0.25	8.05		
TRIFTS vs Commercial Diesel by Carbon #					

Commercial Diesel

TRIFTS LFG DISTILLED (55C)

TRIFTS LFG

29 30 31 32 33 34

ASTM D975 "Standard Specification for Diesel Fuel Oils"

Fuel Analysis, ASTM Standard	Spec (No. 2 Diesel)	Commercial Diesel	TRIFTS LFG	TRIFTS LFG (Dist 55C)
Specific Gravity, ASTM D4052 (g/cc)		0.8215	0.7386	0.7489
Cetane Index, ASTM D976	≥ 40	57.6	84.5	72.7
Cetane Index, ASTM D4737	≥ 40	59.7	92.3	83.4
Flash Point, ASTM D93 (°C)	≥ 52	87	49	57
Cloud Point, ASTM D2500 (°C)		-6	-6	-3
Pour Point, ASTM D97 (°C)		-9	-9	-6
Distillation, ASTM D86 (°C)				
IBP: 0.5wt%		203	143	142
10%		220	164	154
50%		269	234	216
90%	282-338	329	327	314
FBP: 99.5%		378	388	378
Net Heat Comb., ASTM D3338 (MJ/kg)		43.164	44.520	44.355

Fuel Analysis Results

Pilot/Demonstration Scale Up

35 SCFM LFG Feed 111 Gal/Day Diesel

Example of skid mounted unit

Key Challenges and Approach

Key Challenges and Approach

T2C-ENERGY

- Reformer energy requirement met by FTS fuel gas
- Efficient heat integration
- Utility requirements provided by process itself
- Overall self sufficient process
- Minimize any outside fossil fuel derived energy inputs

Energy Requirements and Generation from 1500 scfm					
LFG Plant					
	BTU/hr Required	BTU/hr Produced			
Reformer requires	14,472,000				
Fuel Gas Energy Content		22,488,465			
Boiler	1,820,786				
LFG cooler	160,414				
Reformer HX		7,319,143			
Syngas cooler	1,807,500				
FTS cooler	3,451,114				
FT reactor		9,761,143			
Compressor 1	399,112				
Air Compressor	258,223				
Compressor 2	1,287,300				
Compressor 3	1,068,006				
TOTALS	TOTALS				
Equip/RXN Required	24,724,456				
Energy Produced		39,568,751			
Net Energy Produced		14,844,295			
Additional Electric	0.86	MW			
Power Generation	0.80				

Financials (1,500 SCFM Biogas) 118 bpd (5k gal/day) Diesel Facility

- At current pump price of 2.47 NPV = \$40.6MM
- Initial Construction Capital \$7MM
- RIN = \$4.47/gal diesel (D3 ~ \$2.63/RIN)

Breakeven <u>No RIN credit</u> at 435 SCFM biogas production rate

Unique Aspect Summary

- Utilize 100% of Biogas Feedstock (CO₂ Utilization)
- Significant Reduction of Unit Operations
- Compatible with Current Infrastructure
- High Quality Value Add Product (Drop-In Diesel)
- Self Sufficient Process
- Vastly Improved Economics and Profitablitliy

Management Team

- 40+ Years in Biofuel Industry
- Recognized Industry Leaders
- Proven Track Record in Technology Scale Up
- Partnered with USCleantech and Renovare Fuels as part of US and Global Business Strategy

Sustainable Solutions for The Waste To Energy Sector

Biogas to Diesel

www.t2cenergy.com