

Crumbles[®] Technology Reactor-ready Feedstocks

2017 AE50 Award for Innovation In Biomass Feedstock Processing

BioEconomy 2017

Mike Perry

CEO

United States Department of Agriculture

National Institute of Food and Agriculture

forestconcepts[™]

Industry Agnostic...

The new bio-economy needs cost-effective, quality optimized feedstocks...

Bio-Intermediates	Solid Bio-Fuels	Bio-Materials	Liquid & Gaseous Fuels
Reactor-ready	Wood chips	Industrial fiber	Cellulosic ethanol
Feedstocks	Processed wood	Absorbents	Butanol
Precision Feedstocks®	chips	Carriers (coated/infused)	Aviation Fuel (Jet A)
Biomass-derived sugars	Residential pellets	Erosion control materials	Methanol
Aromatics	Industrial pellets	Filter media	Naptha
Hydrolysate	Torrefied fuels	Animal bedding	Renewable Diesel
AFEX fiber feedstock	Biochar	Pet litter	Renewable Marine Fuel
Biocrude (pyoil)	Semi-activated		Renewable Natural Gas
Biocrude (HTL)	carbon		Green Gas (RNG)
Syngas (gasification)	Activated carbon		Bio-based heating oil (No.2)
Pyrolytic acid			
Acetic Acid			
Furfural			
Lignin			

More than 40 prospective customers waiting...

forestconcepts[™]

The Problem

The current standard of drying wood chips and hammermilling consumes an average of <u>70%</u> of the total energy used in a pellet plant.

The Opportunity:

Reduce the upfront energy cost by 50% = \$ millions in savings

Forest Concepts' Crumbles[®] Technology can... and is about to go commercial!

Market Potential

Future Market Insights predicts:
Bio-plastic market \$43.8B by 2020 at a CAGR of 28.8%
Build-out of the bio-economy industry between now
and 2025 will require more than \$180 billion of capital.
Our feedstock processing innovations apply to at least
\$10 billion of equipment.

What are Crumbles®?

- Flows like grain
- Crumble at Field Moisture
- Don't dry unless needed

- Dry After milling = more than 50% savings
- 1/3 the energy of hammer milling

Crumbles[®] Particles

- Precision particles
- Physical properties are optimized for specific conversion processes
 - Length
 - Thickness
 - Moisture
 - Uniformity of size
 - Flowability
- Two pathways
 - From veneer
 - From chips
- Cascading processing of chip particle size converges on cutter thickness
 - Minimal production of fines

The Economics

	Process	Particle Size	Moisture	Specific Energy	Total Energy	Total Energy	Electricity Use
Poplar Chips		(Xgm, mm)	(%wb)	(MJ/odMg)	(MJ/odMg)	(Kwh/ odUS Ton)	(\$/ odUS Ton)
Crumbler [®] , cascading	As recorded	1.0	55%	240	550	139	\$7.80
Hammermill, 2.18mm	Mill and Blower	1.6	45%	690	2350	592	\$33.32
Corn Stalks							
Crumbler [®] , cascading	As recorded	1.5	82%	180	680	171	\$9.64
Hammermill, 12.5mm	Mill and Blower	1.5	46%	730	4530	1096	\$61.68

Results of testing at the Washington State University Wood Science and Bioproducts lab

- For poplar chips, <u>savings of \$25.52 per U.S. dry ton (-77%)</u> translates to multi-million dollars per year in electricity savings for biorefiners.
- Processing green corn stalks through the two comminution systems yielded an energy savings of more than -84%.

Business Model

We will compete for market share and revenues as: • a direct equipment seller

a toll processor of feedstocks a licensor of technology

21% Market Share-5 Years

	Estimate	Estimated Market Size at Saturation			First Five Years - Penetration		
Revenues by Product Type	Qty	Price / Unit	\$ Market Size	market share	Units	Revenues	
CrumblesMuncher - 1 TPH	200	\$125,000	\$25,000,000	25%	50	\$6,250,000	
CrumblesMuncher - 10 TPH	1,500	\$700,000	\$1,050,000,000	20%	300	\$210,000,000	
Screen System - 1 TPH	200	\$20,000	\$6,000,000	30%	60	\$1,200,000	
Screen System - 5 TPH	200	\$45,000	\$9,000,000	20%	40	\$1,800,000	
Screen System - 10 TPH	1,500	\$75,000	\$112,500,000	20%	300	\$22,500,000	
			-		-	-	
			-		-	-	
			-		-	-	
Total Products Revenues	3,600		\$1,202,500,000	21%	750	\$241,750,000	

Success Factors

- 2017 3rd party evaluations critical
 - Refine commercial prototype Crumbler[®]
 - Real-time proof of benefits to costs and savings
- Prepare for demand for commercial scale machines
 - Build inventory (contract manufacturing)
 - Build parts inventory & support
 - Add marketing & business development
 - Contract field service
 - Funding required

• Complete development of dryer control systems

An Experienced Team

Combining structural plant biology with engineering...

forestconcepts™

Ask = \$10 Million

Commercialization

- Build machines, heads & parts inventory (contract manufacturing)
- Add support system for installation, training & service
- Add staff in business development and engineering

Expand our development efforts and commercialize our novel drying systems for small particle feedstocks.

IP development and maintenance

Why Invest?

"Every bio-company needs quality feedstocks"

- Commercial scale (10 tph) Crumbler[®] evaluations set
- 14 U.S. Patents issued on the processes and the feedstock particles (more pending)
- \$180 billion market with \$10 billion potential
- <u>Experienced team</u>: Dr. James Dooley, Tom Broderick, and an excellent staff of engineers.
- The opportunity for an ROI within 3-5 years

Crumbles[®] Technology

www.forestconcepts.com

Winner of the 2017 AE50 Award for Innovation In Biomass Feedstock Processing

United States Department of Agriculture

National Institute of Food and Agriculture

forestconcepts[™]