The bioeconomy through the lens of carbon management

Bioeconomy 2017 Washington, DC

Sean McCoy Energy Analyst, E Program

12 July 2017

LLNL-PRES-734806

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The economy is deeply rooted in carbon

Pre-industrial revolution: virtually all carbon came from biomass – i.e., most everything was a bioproduct.

Industrial revolution: use of fossil hydrocarbons – mainly coal – grows rapidly for fuel

Early 20th century: petrochemical industry takes off (e.g., Bakelite 1907, PVC 1920's, PS 1930's, PE 1933)

Early 21st century: Oil, Coal, and gas total 11,200 Mtoe/y; ~10% and growing as petrochemical feedstock (IEA, 2016)

Nicolás Pérez

<u>Wikipedia</u>

The dominant energy vectors are carbon-based

Total Primary Energy: 102 EJ

Delivered in carbonbased carriers: 88 EJ

> Carbon-based carriers to Electricity: 25 EJ

> Carbon-based carriers to other sectors: 63 EJ

2016 US Energy flows in Quadrillion BTU. Data: EIA (2017)

Carbon is the central element in materials all around us

CO₂ emissions to zero by mid-century, and then negative

- Fossil hydrocarbon use is not compatible with long-term climate goals
- Renewable electricity and hydrogen can be alternative vectors; but, hydrocarbons are still *really useful fuels and materials*
- Remaining options are bio- or direct air capture-based fuels and materials

How do we harness the bioeconomy to achieve net emissions reductions?

Biogenic CO₂ emissions from production matter

- Biogenic CO₂ emissions are not included in the emissions accounting by convention: biogenic-source CO_2 is returning to the air that which was already there...
- However, a molecule of biogenic CO₂ has the same radiative forcing as any other molecule of CO₂ and the avoidance of it's emission as the same value

Measures to reduce the absolute carbon intensity of biofuels and bioenergy are attractive in climate constrained scenarios

Through the carbon management lens many technology options make sense

- Trade-offs between fossil and biomass fuels in production processes (e.g., burning wet solids v. natural gas)
- Sequestration of co-products rather than their energy use (e.g., biochar, lignin)
- Capture and geological sequestration of CO₂ from bioprocesses
- Synthesis of fuels and intermediates from waste CO₂ and renewable electricity
- End-of-life disposal options to minimize generation of greenhouse gases and maximize sequestration

Example: Applying CCS to existing dry-mill ethanol production

McAloon et al., 2000

Baseline scenario represents modern, efficient facility without capture

Scenario	Description	Production Emissions (gCO ₂ /MJ)	Emissions Change (%)	Capture Energy (MJ/L)
Baseline	 Dry-mill, gas-fired DDGS dryer 2.8 gal ethanol per bushel corn feed (10.3 L/bu) 26,200 Btu/gal (7.3 MJ/L LHV) 0.63 kWh/gal (0.6 MJ/L LHV) 	30.3	-	-
Fermentation Capture	Baseline plus capture of fermentation CO ₂	33.6 <i>(-35.5)</i>	+11 (-106)	0.36
Full Capture	Capture of emissions from fermentation and steam			0.52

Production emissions contribute approximately 40% of the total lifecycle CI for corn-ethanol in the base case

Modify existing gas-fired boilers for oxyfuel operation

- 60 million gallon per year facility requires 30 MW_{th} of low pressure steam, typically generated using a "package boiler"
- Same duty as successful Total Lacq oxyfuel demonstration, although a different boiler configuration

- Corresponding oxygen demand of approximately 200t/d – well within existing "off-the-shelf" oxygen plant capacities
- Technical assessments of package boiler configurations for oxyfuel combustion needed

Capture scenarios reduce production phase emissions

Scenario	Description	Production Emissions (gCO ₂ /MJ)	Emissions Change (%)	Capture Energy (MJ/L)
Baseline	 Dry-mill, gas-fired DDGS dryer 2.8 gal ethanol per bushel corn feed (10.3 L/bu) 26,200 Btu/gal (7.3 MJ/L LHV) 0.63 kWh/gal (0.6 MJ/L LHV) 	30.3	-	-
Fermentation Capture	 Baseline plus capture of fermentation CO₂ 	33.6 <i>(-35.5)</i>	+11 (-106)	0.36
Full Capture	Capture of emissions from fermentation and steam	17.3 (-35.5)	-43 (-160)	0.52

Fermentation emissions are, by convention, considered to be offset by biomass growth; capture is assumed to result in an offsetting credit

Lifecycle reduction of ethanol carbon intensity of over 40%

Lawrence Livermore National Laboratory

Carbon management policy for the bioeconomy

- Bioproducts do not necessarily have a lower climate impact than conventional fossil products (e.g., Mullins et al., Weiss et al., Posen et al.)
- Sorting the climate beneficial products from those that are not, and appropriately incentivizing them requires lifecycle-based policies
- Examples
 - Voluntary certification and labeling programs (e.g., "Energy Star" like programs);
 - Public sector procurement requirements;
 - Lifecycle emissions performance standards (e.g., RFS);
 - Baseline and credit systems (e.g., California LCFS).

California Low Carbon Fuel Standard drives reductions in carbon intensity of fuels

- Goal to reduce lifecycle carbon intensity (CI) of transportation fuels used in California 10% from the 2010 baseline by 2020
- Target CI declines through 2020: fuels sold with a CI above the target generate deficits, below the target generate credits
- Alternative fuel producers could reduce CI of their fuels with CCS
- Crude oil producers and refiners can generate credits by reducing emissions via CCS

April 2017 LCFS price was \$87/tCO₂

ARB (2016) trading data

Capture of fermentation CO₂ makes sense at \$35/t

- Project life of **10 years**
 - 15% discount rate
 - CAPEX and non-energy OPEX per US DOE supported Illinois Basin Decatur Project (IBDP)
 - \$40/MWh electricity cost (MISO)
 - \$10/t transport and storage cost

Avoidance Cost (LC Basis)	\$35/t
Incremental Cost	\$0.09/gal
Fixed and Variable Cost	2,833,000/y
Total Capital Cost	\$12,893,000

Ultimately, carbon management polices have the potential to favor the bioeconomy

- Fossil carbon starts out at a disadvantage, and the best one can do is to approach zero emissions
- Biomass and atmospheric carbon start negative (by removing CO₂ from the biosphere) and we can minimize how much we return
- Smart policies can incentivize carbon management and create a revenue stream for bioproducts
- Emerging bioprocesses should be evaluated through the lens of carbon management and R&D supported where needed

Thank-you!

Sean McCoy, Ph.D. Energy Analyst, E-Program mccoy24@llnl.gov

References (1)

- McAloon, A., F. Taylor, W. Yee, K. Ibsen, and R. Wooley. "Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. A Joint Study Sponsored by U.S. Department of Agriculture and U.S. Department of Energy," 2000.
- Mueller, Steffen, and John Kwik. 2013. "2012 Corn Ethanol: Emerging Plant Energy and Environmental Technologies." Chicago, IL: UIC Energy Resources Center. http://www.erc.uic.edu/assets/img/documents/2012 Corn Ethanol.pdf.
- Posen, I. Daniel, Paulina Jaramillo, and W. Michael Griffin. 2016. "Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families." Environmental Science & Technology 50 (6): 2846–58. doi:10.1021/acs.est.5b05589.
- Saygin, D., D. J. Gielen, M. Draeck, E. Worrell, and M. K. Patel. 2014. "Assessment of the Technical and Economic Potentials of Biomass Use for the Production of Steam, Chemicals and Polymers." Renewable and Sustainable Energy Reviews 40 (December): 1153–67. doi:10.1016/j.rser.2014.07.114.
- Sanderson, Benjamin M., Brian C. O'Neill, and Claudia Tebaldi. 2016. "What Would It Take to Achieve the Paris Temperature Targets?" *Geophysical Research Letters* 43 (13): 7133–42. doi:10.1002/2016GL069563.
- Weiss, Martin, Juliane Haufe, Michael Carus, Miguel Brandão, Stefan Bringezu, Barbara Hermann, and Martin K. Patel. 2012. "A Review of the Environmental Impacts of Biobased Materials." Journal of Industrial Ecology 16 (April): \$169–81. doi:10.1111/j.1530-9290.2012.00468.x.

