

Forest Biodiversity and Woody Biomass Harvesting – a review

2016 Billion-Ton Report, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

July, 2017

2016 BILLION-TON REPORT

Advancing Domestic Resources for a Thriving Bioeconomy Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

January 2017

U.S. DEPARTMENT OF

Contributors

Darren Miller, Ph.D.

Certified Wildlife Biologist Wildlife Scientist and Manager Southern Environmental Research PO Box 2288, Columbus, MS 39704 darren.miller@weyerhaeuser.com Currently, Vice President of The Wildlife Society

T. Bently Wigley, Ph.D.

Vice President, Forestry Programs National Council for Air and Stream Improvement, Inc. PO Box 340317, Clemson, SC 29634 bwigley@ncasi.org

Biodiversity is multi-faceted not easily measured

Genetic, population, species, community, ecosystem-levels

Scope of Assessment

- Forestland—Land at least 120 ft wide and 1 acre in size with at least 10% cover (or equivalent stocking) by live trees of any size, including land that formerly had such tree cover and that will be naturally or artificially regenerated.
- Timberland—Forestland that is producing, or is capable of producing, in excess of 20 ft³ per acre per year of industrial wood and not withdrawn from timber utilization by statute or administrative regulation.

Forestland623 million acresTimberland475 million acres

Scope of Assessment - selected ForSEAM models

Forest Sustainable and Economic Analysis

Mechanisms by which biomass harvesting may affect biodiversity

Decreased dead wood on forest floor

- Fine woody debris (tops and branches)
- Coarse woody debris (≥ 10 cm)
- Fewer residue piles

Modifying forest age-class distribution

Potential increase young forests

ForSeam assumptions most relevant to biodiversity

- Forest cover type remained constant (no land use change)
- Stands < ¹/₄ mile of an existing road available for biomass
- >30% of logging residues left on-site to provide structure
- No removal on slopes > 40% except in PNW
- Model solved for conventional timber demands generating logging residues first
 - whole-tree biomass harvests did not occur unless demand for woody biomass not met by logging residues
- Availability of biomass declined through time because land was available for harvest only once during duration of models compared

Approach and Methods

Biodiversity Indicators - taxa of special concern

- 1) Rare
- 2) Keystone
- 3) Bioindicator
- 4) Commercial value
- 5) Cultural importance
- 6) Recreational value

From Indicators to support environmental sustainability

of bioenergy systems (McBride et al. 2011)

USFS National Hierarchical Framework of Ecological Units (Cleland et al. 2007)

Results – conterminous United States

Case study: Lungless Salamanders - Bioindicators

Photo Credits: Erik Wild (left, right), Sara Viernum (center)

Results – Southern Region

Case Study: Gopher Tortoise – Keystone Species

Photo Credit – Randy Browning/USFWS

Results – Brief Summary Other Regions

- North Central Region
 - logging residues from lowland and upland hardwoods
 - Case studies: American Marten species of cultural importance, Golden-winged warbler – species of concern

- Northeast Region
 - Whole-tree biomass from lowland and upland hardwoods and natural softwoods under baseline (ML) 2017
 - Logging residues lowland hardwoods and natural softwoods under 2040 scenarios.
 - Case studies: American woodcock recreational species, Canada Lynx – rare native

Results – Brief Summary Other Regions

- Pacific Northwest Region
 - Natural softwoods whole-tree harvests baseline 2017; logging residues 2040 scenarios
 - Young forests dominated under all scenarios

- Case study: Northern flying squirrel keystone species
- Inland West Region
 - Lowest potential total acres harvested for woody biomass
 - Whole-tree biomass from lowland hardwoods and natural softwoods under all scenarios

Key Findings

- Regional variation in available woody biomass potential; Southern Region contains nearly half
 - Depends on forest types sourcing feedstock
- Impact to biodiversity? It depends
 - Potential changes beneficial for some species, while negative for others
- Impacts must be assessed within context of broader processes
 - Loss of forest cover, economics, urbanization, and fire risk
- By describing potential biomass production regionally, results can be used in conjunction with finer-scale biodiversity assessments
 - State Wildlife Action plans to identify species that may be vulnerable to expected changes

Recommendations for Future Research

- Conduct more manipulative studies that vary amounts of coarse and fine woody materials retained across gradients in forest cover and forest types
 - Help determine when the responses are due to forest-harvest treatment itself or the additive effect of removing dead and downed wood.
- Continue established studies over longer time periods to better understand the effects of wood biomass removal after second- and third-rotation harvests
 - Outstanding questions remain on critical threshold amounts across a variety of forest types and regions to help determine resilience of forest systems to potential harvest intensification.

Next Steps – simulating base landscape

- Maine chosen for initial landscape.
- Spatial distribution of lands identified as potential source of biomass feedstock (green) given ForSEAM assumptions
- Cumulative effects: only 5% of each of the 3 POLYSIS regions would be harvested in any one year.
- Initial results show acreage estimates were within 1% of ForSEAM estimates.
- Case species early succession species

