

Gregg T. Beckham Bioeconomy 2017 July 12, 2017 National Renewable Energy Laboratory
National Bioenergy Center

Lignin from 2G biorefineries will be quite abundant

Advanced Biofuels

ABENGOA BIOENERGY

At a high capacity factor, each plant could process up to 400 tons/day of lignin

Lignin can offer economic and sustainability value to biorefineries

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:
Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

Lignin valorization is essential for biochemical conversion

Metric	Lipids	Fatty Alcohols	Organic Acids	BDO + EtOH
MFSP (\$/GGE, 2014\$) —Prior to coproducts	\$7.80	\$7.43	\$5.48	\$5.60
Fuel C efficiency from biomass (%)	20%	21%	25%	27%
Fuel yield (GGE/ton)	34.2	35.7	43.5	46.5
TCI (\$MM) —Prior to coproducts	\$640	\$628	\$520	\$527
Fuel-carbon chain length	~9–20	~16–20	11	~8–18
Carbon efficiency through lignin-to-coproduct train required to achieve \$3/GGE (C in adipic acid vs C available in residual biomass)	59%	56%	40%	46%

Native lignin structure (monocot)

Multiple bond types, multiple monomer types

- Common polysaccharide-centric treatments break labile C-O linkages and form more recalcitrant C-C linked structures
- More than a century of research in lignin depolymerization

Heterogeneity is the main barrier for lignin upgrading to chemicals

Lignin's Alkyl Aromatic Structure

Depolymerization Product Slate

There is a world of difference between a valuable mixture of chemicals and a mixture of valuable chemicals (Art Power)

- Overcoming lignin heterogeneity is the key problem in lignin valorization to chemicals

Emerging routes to overcome lignin heterogeneity: Engineering plants

Image from Ragauskus et al. Science 2014

Lignin biosynthesis is plastic and can be successfully manipulated

- The C-lignin discovery highlights that native lignin polymers remain to be discovered
- Work in model systems can be transitioned to energy crops via emerging genome editing

Emerging routes to overcome lignin heterogeneity: Plant diversity

Lignin in many species can be quite diverse

Emerging routes to overcome lignin heterogeneity: Biological funneling

Microbial degradation of aromatic compounds — from one strategy to four

Georg Fuchs*, Matthias Boll[‡] and Johann Heider[§]
NATURE REVIEWS | MICROBIOLOGY

Biological funneling enables metabolism of heterogeneous aromatics

Lignin Depolymerization Product Slate

Microbes can funnel lignin-derived aromatics to central metabolism

Significant body of work going into process development around this concept to optimize biocatalysts, biological cultivation processes, separations, and chemical catalysis

Biopolymer production from lignin

Atom-efficient intermediates from lignin

Towards selective lignin valorization

Biological funneling (along with other emerging techniques) may enable a solution to overcome lignin heterogeneity

- Significant opportunity in co-designing in planta lignin with biological and catalytic conversion
- Emerging 2G biorefineries offer space for new lignin valorization processes

Gordon Research Conferences

For your calendars!

The inaugural Lignin Gordon Research

Conference will be held in the August 5-10, 2018

The goal of this proposed GRC on lignin is to bring together leading researchers, postdocs, and students involved in multiple aspects of lignin including its characterization, *in planta* engineering, depolymerization and upgrading, and material science.

Interaction and discussion between plant researchers, chemists, engineers, and material scientists working on this recalcitrant polymer is critical to move the field forward.

Acknowledgements

Energy Efficiency & ENERGY Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

Thank you for your attention!

Collaborators:

- John McGeehan, Portsmouth
- Linda Broadbelt, Keith Tyo, Northwestern
- Ellen Neidle, UGA
- Adam Guss, ORNL
- Yuriy Román-Leshkov, MIT
- Lindsay Eltis, Bill Mohn, UBC

- Sam Purvine, Erika Zink, EMSL
- M. Sandgren, Jerry Ståhlberg, SLU'
- Jen DuBois, Montana State

