We put science to work.™

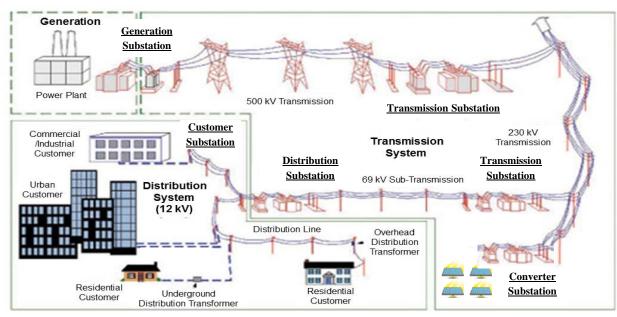
OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Solid State Power Substation Vision, Benefits, Challenges, and Gaps

Klaehn Burkes

Senior Engineer, Savannah River National Laboratory

Tom Keister


Principle Engineer, Resilient Power Systems;

June 27, 2017

Substation Classifications

Types of Substation	Input	Output	Functionality
Generation	Generation Facility	Transmission System	Connecting large generation to the transmission system
Transmission	Transmission System	Transmission System	Interconnect different transmission and sub- transmission voltage systems
Distribution	Transmission System	Distribution System	Located near the end-user changes voltage level from transmission to distribution
Customer	Distribution System	Customer Facility	Non-utility owned connection to distribution or sub-transmission systems
Converter	Inverter Based Renewable Transmission/Distribution and LVDC/MVDC/HVDC Systems		Used to integrate renewable generation and improve efficiency of delivery

Substation Classifications

Generation Substation

Transmission Substation

Distribution Substation

Substation Classifications

Converter Substation

Customer Substation

Savannah River National Laboratory OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Existing Electrical Network

We have the need ...

and the technology and know-how to build a more efficient, flexible, and resilient electrical grid.

Evolution of Substations

Savannah River National Laboratory

A wide variety of different features supported by a specific component that collectively form a system...

- Transformers
- Bus infrastructure
- Circuit breakers
- Fuses
- Disconnect Switches
- Reclosers
- Arrestors
- Reactors
- Grounding schemes
- Control Houses
- RPS

- Protective relays
- Battery Power Supplies
- Communication Networks
- Monitoring systems
- Voltage regulator
- Frequency regulators
- Current and voltage sensors
- Filters
- Reactive power compensation (FACTS)
- AC/DC and DC/AC converters (HVDC)

The list keeps growing....

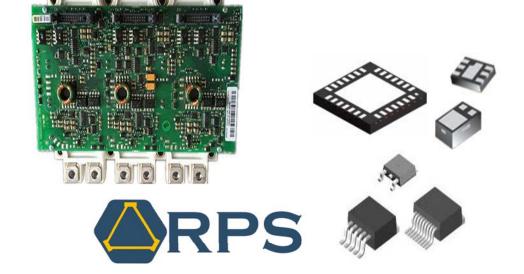
- Wireless Sensors and monitoring
- Frequency stabilizers
- Distance Fault detectors
- Fault current limiters
- Phasor analyzers
- Protective walls
- Mobile versions of all above including transformers

Bavannah River National Laboratory ™ Operated by savannah river nuclear solutions

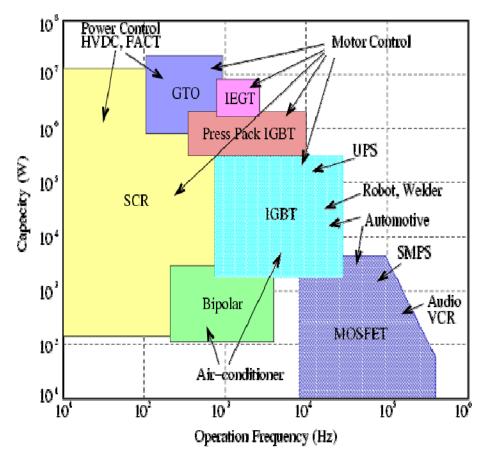
Is there opportunity?

......

Savannah River National Laboratory



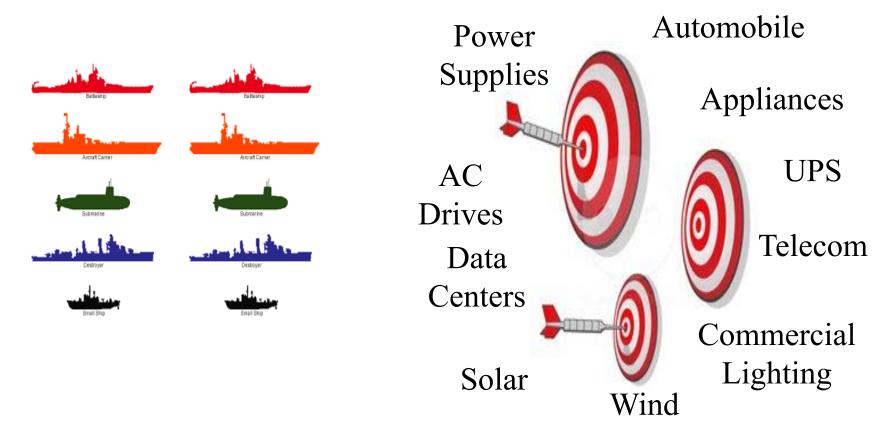
Power Electronics



Savannah River National Laboratory

Power Electronic Milestones

- Modern power electronics era began in 1957, the first commercial Silicon Controlled Rectifier (SCR), was introduced by General Electric Company.
- In the early years, DC converters superseded AC ...
- Not until 1980's with the invention of PWM microprocessor control – did AC converters become much more popular than DC.



Power Electronics development has also been customer application driven

- Product development in low, medium, and high voltages
- Examples
 - AC Drives
 - Wide range of application specific products and ratings
 - High Voltage DC Systems (HVDC)
 - Developed specifically for controlling power between large power networks
 - Designed to be cost effective at very high power and voltage
 - Large size with expensive complicated external systems
 - A marvelous technology developed for a task wherein money and size were not a high priority

In power electronics... Low Voltage/High Volume Reigns King!

Little focus on high volume medium and high voltage applications

Savannah River National Laboratory

Why Power Electronics Now?

• Semiconductors Silicon and Silicon Carbide

- More efficient operation at higher power conversion frequencies
- Better packages and thermal designs
- Higher voltage

• Power Converters

- Embedded controllers advancements
- Power components such as capacitors, gate drivers, interface, and sensors
- High power density packaging with new thermal and dielectric systems
- Power Conversion
 - Continued advancement of topologies such as modular multilevel and matrix inverters

Unique Opportunity to Re-Imagine the Utility Workhorse " the Substation"

Instead of the existing "component" based customized system solution...

Use medium and high voltage power electronics with multiple configurable features

Imagining a substation built with power electronics that includes features from existing substations plus others such as:

- Proactive instead of reactive control
- Distributed rather than centralized control
- AC/DC Power Router
- Receives poor power quality and sends good
- Fault tolerant
- Multi-purpose scalable converters

How can we make this happen?

Savannah River National Laboratory ™ Operated by savannah river nuclear solutions

This roadmap does not *hopefully* rely on *<i>"perceived higher value* from new SSPS features" to "convince the customer" to pay more

Savannah River National Laboratory

The Roadmap seeks to reduce cost and increase value/benefits

- Both are interdependent
- To realize the most benefits it requires the widest use of SSPS
- To use the most SSPS requires the lowest cost

Savannah River National Laboratory

The higher the cost differential between SSPS and existing technology, the lower the acceptance of extra value.

Savannah River National Laboratory ™ Operated by savannah river nuclear solutions

<u>Reduce cost</u> in many ways:

• SSPS Converter Cost

- Semiconductor
- Increasing efficiency
- Reducing converter/system size
- Same hardware for multiple applications

• SSPS Power Conversion and System Cost

- Scalable power conversion products
- Eliminate or minimize auxiliary or supporting components
- Multiple flexible features to sell more products

• SSPS Brownfield and greenfield applications

Increase value or benefits

The greater the extra value, the higher the acceptable price for the product.

Savannah River National Laboratory

Develop extra value through research and analysis as well as Beta site development to improve :

- Asset utilization
- Network efficiency
- Network resiliency
- Black-start capability
- Capacity
- Power quality
- Flexibility

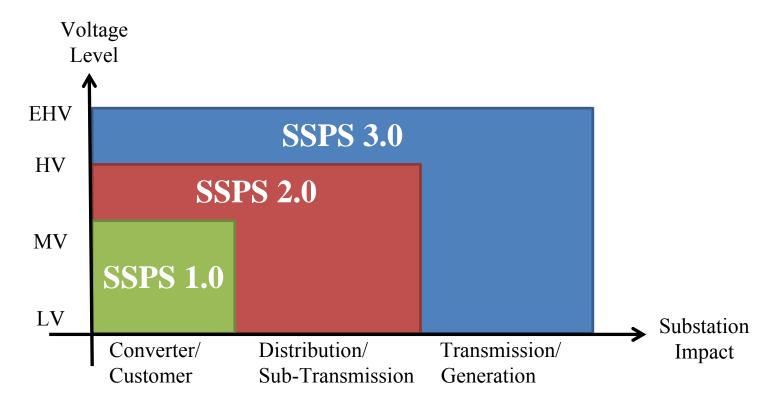
Savannah River National Laboratory ™ OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

- Total impact of SSPS on network efficiency through better asset utilization (rather than just its inherent efficiency) is vital to achieve reasonable SSPS cost.
- Operation over a wide voltage span?
- Value of AC/DC choices?
- Fault tolerance?
- Improved power quality?

Ultimate SSPS Vision

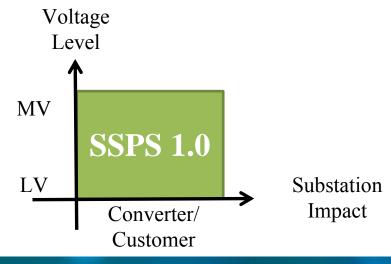
Scalable, adaptable, flexible AC/DC Power routers that span all voltages

Savannah River National Laboratory


.....

A *Solid State Power Substation* is defined as a substation with strategic integration of high voltage power electronics for enhanced capabilities that can provide system benefits and support evolution of the electric power system.

Envisioned SSPS Adoption/Deployment Pathway


- SSPS 1.0 "Low/Medium Voltage Local Applications"
- SSPS 2.0 "Low/Medium/High Voltage Local Applications"
- SSPS 3.0 "System Applications and Multiple Substations"

Solid State Power Substation 1.0

SSPS 1.0 – "Low/Medium Voltage Local Applications" is a substation that can perform the following functions at voltage levels between $1kV \sim 35kV$ with primary applications at Customer and Converter Substations:

- Provide reactive power compensation
- Provide voltage and frequency regulation
- Maintain appropriate power quality at its location
- Perform bidirectional power routing on low voltage ports
- Allow for the connection of multi-frequency systems
- Enable nanogrids of single buildings

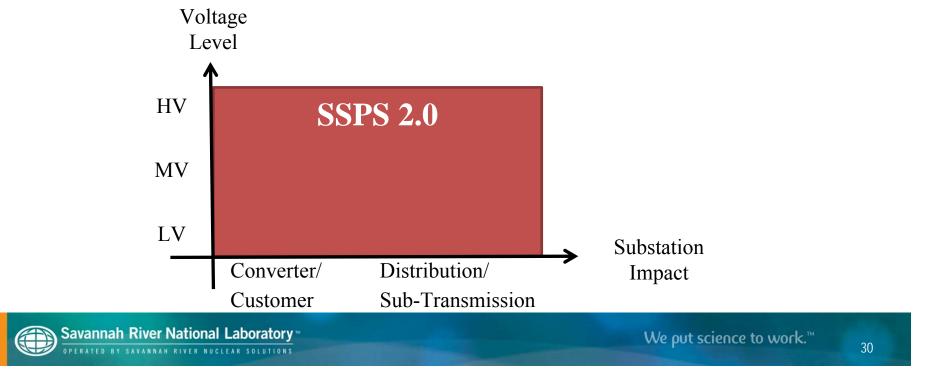
Solid State Power Substation 1.0 Use Cases

SSPS 1.0 – "Low/Medium Voltage Local Applications"

Customer Substations

- Data Centers
 - DC power distribution
 - Improve power quality
- Industrial Facilities
 - Remote oil, gas, and mining operations
 - Improved power quality
 - High frequency bus for manufacturing facilities
 - Reduces converter losses for high frequency and efficiency motors
 - High frequency welding
 - Power flow control on low voltage ports for increased capacity, stability, and resiliency
- Buildings
 - DC power distribution
 - Nanogrid for single or multiple buildings utilizing combined sources and storage

Converter Substation


- Reducing cost for remote installation line capacity upgrades
- Provide better power quality management, minimize islanding concerns, and provide power flow control with DER and BES

Solid State Power Substation 2.0

SSPS 2.0 – "Low/Medium/High Voltage Local Applications" builds on all of the capabilities and applications of SSPS 1.0 but can also provide the following functions and features at voltage levels up to 230kV, expanding applications to Distribution and Sub-Transmission Substations:

- + Low voltage ride through
- + System coordination of fault current
- + Provides bidirectional power flow control between transmission and distribution
- + Enables distribution feeder islanding and microgrids

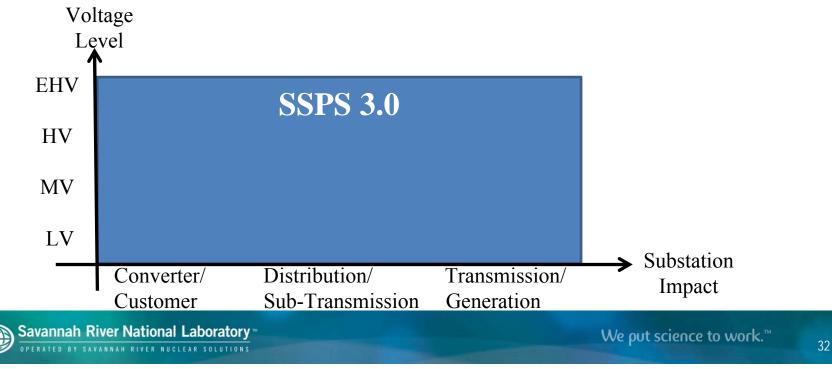
Solid State Power Substation 2.0 Use Cases

SSPS 2.0 – "Low/Medium/High Voltage Local Applications"

Distribution Substations

- Power Quality
 - Allows for VAR support and frequency regulation
 - Upgrade power line capacity
 - Agnostic to frequency (AC or DC)
- Microgrids
 - Enables integration of utility scale BES and DER
 - Improves resiliency with distribution feeder islanding/microgrids
 - Dynamic bidirectional power flow between loads and sources
- Reduced substation footprint

Sub-Transmission Substations


- Power Quality and Flow Controller
- Mobile Substations
 - Response to national disasters from man-made or natural sources
 - Modular, smaller, lighter and improved black-start capabilities
 - Deployment to critical loads

Solid State Power Substation 3.0

SSPS 3.0 – "System Applications and Multiple Substations" possesses all of the capabilities of SSPS 2.0 but can also provide the following functions and features at any voltage level, enabling coordination of multiple SSPS across the entire electric power system and expanding applications to Transmission and Generation Substations:

- + Distributed control of multiple SSPS systems
- + Enhanced power routing for optimizing operational efficiency and increased resilience
- + System decoupling for improved stability
- + Provides black start support on a regional network

Solid State Power Substation 3.0 Use Cases

SSPS 3.0 – "System Applications and Multiple Substations"

Transmission Substations

- Energy Markets
 - Enhanced control for buying and selling power in regions through distributed power flow control

• Emergency and Black-start support

- Routing power through available transmission network to critical loads
- Utilizing BES and other resources on the grid and slowly connecting load as sources become available
- Mobile substations for deploying rapidly in critical locations
- Asset Utilization
 - Increasing capacity factor because of better power flow control
 - Modularity allows for easy increase in power capacity reducing over rating designs for population growth.

Generation Substations

• Decoupling of Generator Synchronization

Envisioned SSPS Adoption/Deployment Pathway

- SSPS 1.0 "Low/Medium Voltage Local Applications"
- SSPS 2.0 "Low/Medium/High Voltage Local Applications"
- SSPS 3.0 "System Applications and Multiple Substations"

Technical Challenges of Implementing SSPS

Attempting to increase value proposition as we decrease cost. Therefore the Critical Technology Categories for SSPS are:

- Semiconductor Devices and Modules
- Power Electronic Converters and Systems
- Grid Integration and Application
- Industry Standards

Semiconductor Device and Module Challenges

• SSPS requires cost effective and efficient semiconductor devices and modules for high frequency, high voltage, and high power operation attainable through:

		<u>Near-Term</u> (5 years)	Mid-Term (10 years)	Long-Term (20 years)
Technology Categories	R&D Challenges		<u>Goals</u>	
d d	Lower Conduction and Switching Losses	↓20%	↓40%	↓80%
Semiconducto Devices and Modules	Higher Blocking Voltage	1.7kV	3.3kV	10kV
	Lower Device and Module Costs	↓20%	↓40%	↓80%
	Module Packaging Temperature, Architecture, layout and Component Integration	↑20%	↑40%	↑80%

Power Converter and System Challenges

• Providing scalable voltage and power solutions based on standard power electronic building blocks may reduce cost in many ways:

		<u>Near-Term</u> (5 years)	<u>Mid-Term</u> (10 years)	Long-Term (20 years)
<u>Technology</u> Categories	R&D Challenges		<u>Goals</u>	
nic ystems	Modular and Scalable Architectures that are Resistant to Failure	N+1 Failures	Multiple Failures	Self- Healing
Jectro and S	Flexible System Design	<35kV	<230kV	EHV
	Intelligent System of SSPS Controllers	Hot Swappable	Full Substation	Network
Power I	Enhanced Thermal Management Systems	Dielectric	Forced Dielectric	Flow Boiling Dielectric
	Lower System Costs	\$120/kVA	\$100/kVA	\$60/kVA

Grid Integration and Application Challenges

• SSPS enhanced functionalities must provide benefits that outweigh their integration costs while maintaining or increasing grid reliability and safety through:

		<u>Near-Term</u> (5 years)	<u>Mid-Term</u> (10 years)	Long-Term (20 years)
<u>Technology</u> <u>Categories</u>	R&D Challenges		Goals	
1 and	Control and Optimization Algorithms	Low Voltage Power Routing	Islanding and Microgrids	Distributed Power Flow Control
ration cation	System Modeling and Simulation	Single Substation	Multiple Sources/Loads	Network
Grid Integration and Application	Analysis to understand optimal locations to quantify benefits	Customer & Converter	Distribution & Sub-Transmission	Generation & Transmission
Grid	Tools and techniques to ensure coordination with existing protection schemes	Single Substation	Multiple Substations	Network

Industry Standard Development Challenges

• Standards are developed to ensure safety, compatibility, and interoperability between different technologies, and SSPS requires a fresh look at existing industry standards:

		<u>Near-Term</u> (5 years)	<u>Mid-Term</u> (10 years)	<u>Long-Term</u> (20 years)
<u>Technology</u> <u>Categories</u>	R&D Challenges	Goals		
	Interconnection	IEEE 1547- 2003	IEEE P1032	IEEE 1378-1997
Industry Standards	Controls	IEEE 2030- 2011	IEEE 1676-2010	IEEE C37.1
	Communications	IEC 61850-6	IEC TR 61850-90-1 & IEEE 1815.1-2015	IEC TR 61850- 90-2
	Cyber & Physical Security	IEEE 1686- 2013	IEEE 1402-2000	IEEE C37.240- 2014
	Mechanical Construction	IEEE 1127-2013, 979-2012, 1268-2016		
	Electrical Disturbances	IEEE 1585- 2002	IEEE WGI5-Voltage Source	d Converters

SSPS 1.0 Functions and Technology Gaps

D	efining Functions and Features	Technology Gaps
 C F T N Q N Q N Q N Q N Q N N	Provide reactive power compensation Provide voltage and frequency egulation Maintain appropriate power quality at its location Perform bidirectional power outing on low voltage ports Allow for multi-frequency systems Enable nanogrids of single ouildings	 Converters able to directly connect to distribution level voltages Controls for secondary power routing Modular architectures Lower system costs Nanogrid controllers Interconnection standards Control standards Cyber & Physical Security standards

SSPS 2.0 Functions and Technology Gaps

	Defining Functions and Features	Technology Gaps
SSPS 2.0	 + Low voltage ride through + System coordination of fault current + Provides bidirectional power flow control between transmission and distribution + Enables distribution feeder islanding and microgrids 	 Converters able to directly connect to transmission level voltages Controls for microgrid/islanding of distribution feeders Controls to optimize system power flow Communication standards Electrical disturbances standards

SSPS 3.0 Functions and Technology Gaps

	Defining Functions and Features	Technology Gaps
SSPS 3.0	 + Distributed control of multiple SSPS systems + Enhanced power routing for optimizing operational efficiency and increased resilience + System decoupling for improved stability + Provides black start support on a regional network 	 Converters able to directly connect to extra higher voltage systems Distributed power flow control Power system stability control Black start coordination Distributed control operation standards

Savannah River National Laboratory ™ Operated by savannah river nuclear solutions

Ultimate SSPS Vision

Scalable, adaptable, cost effective, flexible AC/DC Power routers that span all voltages

Savannah River National Laboratory