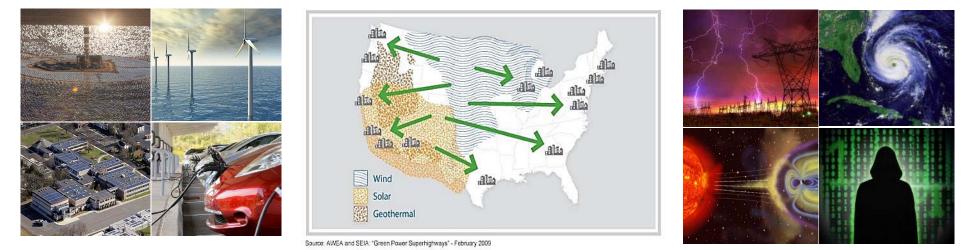
Grid Components Landscape: Challenges and Opportunities

Dominic Lee Sustainable Electricity Oak Ridge National Laboratory

Next-Generation Grid Components R&D Program Planning Workshop

August 17, 2016 Pittsburgh, PA



ORNL is managed by UT-Battelle for the US Department of Energy

Evolving energy mix and threats will affect how electricity is delivered

Evolving energy mix

Potential threats

- How will these changes impact the transmission and distribution networks?
- What innovations must be made to what hardware to ensure reliable and affordable electricity?

Five categories to consider

Transformers

Power transformers Distribution transformers Solid-state transformers Others

Cables & Conductors

Conductors Cables Connectors Others

Flow Control

HVDC Converters FACTS Voltage regulators Others

Sensors

Protection Equipment

Breakers Arresters FCLs Others

High strength, low cost materials can increase the ampacity of OH lines

e.g. Deformation Processed Metal-Metal Composites –DMMC (Ames Lab):

Conductive-matrix nano-filament composites that is deformed under high strain can exhibit very high strength

Low cost, low density, highly conductive metals

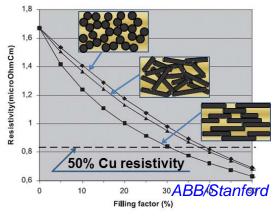
Adapted to fair and	· · · · · · · · · · · · · · · · ·	and a state of the second s
	A state of the second stat	
		in the second
		Part Part Part
ZOKU	X588 58Mm	10 57 BEC
an Ingener and a sub-second and a sub-		in the second second

AI + 9%Ca

	ACSR	Al-20%Ca *
Density (g/cm ³)	3.43	2.47
Strength (MPa)	304	660
DC cond 20°C ($\mu\Omega m$) ⁻¹	38.1	36.2
Elastic modulus (GPa)	85	60
* Estimated		Ames Lab

4 Grid Component Workshop

Issues:


- Starting materials
- Processing/ Manufacturing
- Stability

Low resistance materials can reduce losses, size and weight of components

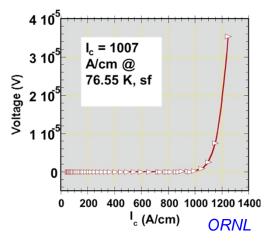
Ultraconductive copper

- UCC (ICA, UCF, etc.)
 - Cu + CNTs (expansive)
 - Higher electrical conductivity, strength, thermal conductivity

Issues:

- Mechanisms
- Processing
- Process stability
 - Not repeatable
 - Not predictable

Covetic Nanomaterials

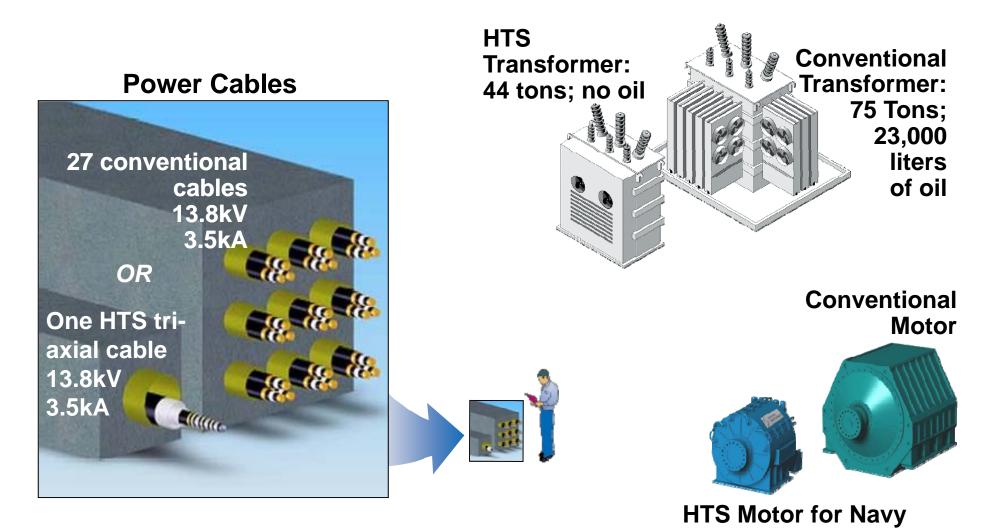

(DOE-AMO, NLs, U Md)

- Metal + Carbon
- Higher electrical conductivity, strength, thermal conductivity

%IACS Condition Туре 6061 47.4 Conv T6 47.8 T6 ground 3%C 56.1 T6 EDM 6061 67.3 As extruded EC-1350 61.8 Elect grade

Superconductors-

- HTS (companies)77K operation
 - Zero DC
 resistance



Issues:

- Mechanisms
- Processing
- Process stability?

Impact on components: HTS example

Half the size and weight of conventional components

6 Grid Component Workshop

Novel soft magnetics can enhance the performance, reduce weight and size of grid components

Material	alloy composition	losses (20kHz, 200mT) [W/kg]	saturation Bsat [mT]	magneto- striction λ _s [10 ⁻⁶]	permeability (50Hz) μ ₄ - μ _{max}	max. working temp. [°C]
grain oriented Silicon steel	Fe ₉₇ Si ₃	> 1.000	2.000	9	2.000-35.000	appx.120
standard crystalline permalloy I	Ni45Fe55	> 150	1.550	25	12.000 - 80.000	130
standard crystalline permalloy II	Ni ₅₄ Fe ₄₆	> 100	1.500	25	60.000-125.000	130
advanced Silicon steel	Fe _{93,5} Si _{6,5}	40	1.300	0,1	16.000	130
Fe- amorphous alloy	Fe ₇₆ (Si,B) ₂₄	18	1.560	27	6.500 - 8.000	150
high performance ferrite	MnZn	17	500	21	1.500 - 15.000	100/120
advanced crystalline permalloy	Ni ₈₀ Fe ₂₀	> 15	800	1	150.000-300.000	130
Co-amorphous alloys a	C073(Si,B)27	5,0	550	< 0,2	100.000-150.000	90/120
Co-amorphous alloys b	C077(Si,B)23	5,5	820	< 0,2	2.000 - 4.500	120
Co-amorphous alloys c	Co80(Si,B)20	6,5	1.000	< 0,2	1.000 - 2.500	120
nanocrystalline alloys l	FeCuNbSiB	4,0	1.230	0,1	20.000-200.000	120/ 180
nanocrystalline alloys II	FeCuNbSiB	4,5	1.350	2,3	20.000-200.000	120/ 180
nanocrystalline alloys III	FeCuNbSiB	8,0	1.450	5,5	~ 100.000	120/ 180

Issues:

 Manufacturing • Cost

Form factor

MAGNETEC GmbH

7 Grid Component Workshop

High voltage, high power Wide Bandgap semiconductor devices are emerging

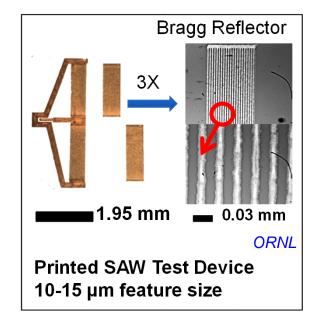
\$70M DOE-AMO funds to accelerate the adoption of advanced semiconductor components made with SiC and GaN into a wide range of products and systems.

Property	Si	4H- SiC	GaN	Diamond
Bandgap (eV)	1.12	3.26	3.45	5.45
Breakdown Field (kV/cm)	300	2200	2000	10000
Thermal Cond (W/cm·K)	1.5	4.9	1.3	22
Dielectric const.	11.9	10.1	9	5.5
e Mobility (cm²/V·s)	1500	1000	1250	2200
Hole Mobility (cm ² /V·s)	600	115	850	850

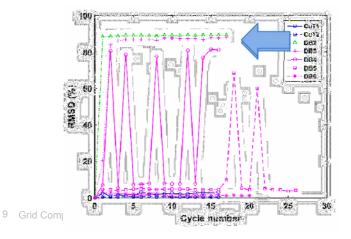
Commercial

SiC MOSFET 1.7 kV, 300 A Rds(on): 8 mΩ <u>SiC JFET</u> 1.2 kV, 38 A Rds(on): 45 mΩ <u>SiC Schottky</u> 1.2 kV, 160 A Rds(on): 10 mΩ

Research


<u>SiC Schottky</u> 15 kV,250 mΩ-cm² <u>SiC MOSFET</u> 15 kV, 10A <u>SiC IGBT</u> 15 kV,20 A <u>SiC GTO</u> 8 kV,100 A-cm² <u>SiC p-GTO</u> 22 kV,20 A

Sensors are essential for situation awareness, health monitoring

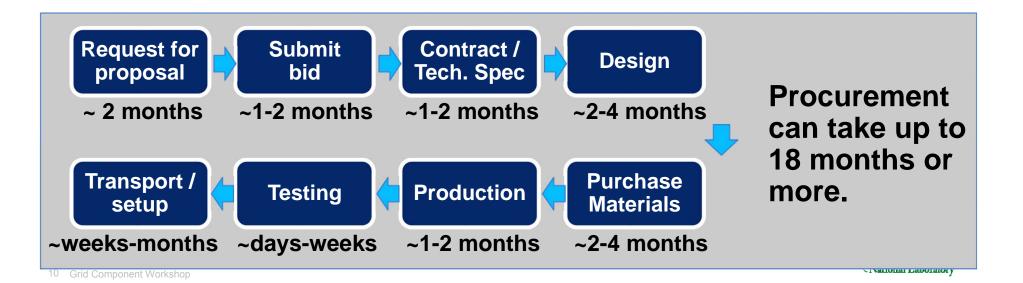

e.g. Low cost, passive, wireless, direct-print sensors (ORNL)

- SAW passive, flexible platform, stick-n-peel
- Modalities
 - > Physical
 - Temperature
 - Pressure
 - Humidity
 - Strain / vibration
- > Electronic
 - Current flow CO₂
 - Voltage
- Charge
- CH₄
 VOCs

> Chemical

e.g. Structural integrity smart patch (ORNL)

- PZT-based sensor.
- Measure electromechanical impedance, which is affected by the mechanical integrity of the structure
- Root mean square deviation (RNSD) of conductance related to
 - □ Damage index
 - □ Fatigue, etc.



Large power transformers: Expansive, large, heavy and takes long time to replace

Voltage Rating (Primary-Secondary)	Capacity MVA Rating	Approx. Price	Approx. Weight & Dimensions (tons / ft)			
Transmission transformer						
Three-Phase						
230-115 kV	300	\$ 2M	170, 21W x 27L x 25H			
345-138 kV	500	\$ 4M	335, 45W x 25L x 30H			
765-138 kV	750	\$ 7.5M	410, 56W x 40L x 45H			
Single-Phase						
765-345 kV	500	\$ 4.5M	235, 40W x 30L x 40H			
			LPTs2011 Estimates			

Large Power Transformers and the US Electric Grid: DOE-OE 2012 & 2014 update

LPT Challenge: Fast replacements

Status:

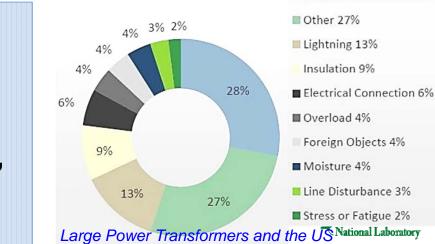
Spare Programs:

STEP, SED, SpareConnect, Grid Assurance, DOE Transformer Reserve Study, private agreements...

Novel designs:

e.g. Siemen's GIC-safe power transformers

Siemens


DHS Recovery Transformer (RecX):

- 3 single-phase 345-138kV modules, 600MVA
- Installed CenterPoint Energy substation: 106 hours
- Energized: March 17, 2012

Electrical Disturbances 28%

• 99% efficient, 14% fixed impedance, designed for 5-10 yrs

Electric Grid: DOE-OE 2014 update

- Flexible, adaptive, modular high efficiency designs with interchangeable parts
- Advanced materials: Soft magnetics, windings, insulation
- Approaches to extend LPT lifetime

Solid State Transformer Challenge: High voltage, high efficiency, low cost, small footprint

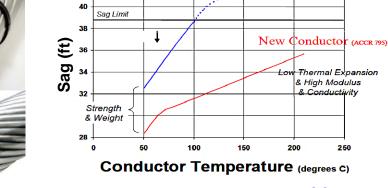
- Combine ss devices and HF transformer to reduce system size and weight
- <u>Added functionalities</u>: DC bus and services such as voltage regulation, reactive power, flow control, limit fault current ...
- Issues: low efficiency, many devices (e.g. multi-level), expensive
- Prototype HF transformers showed nanocrystalline & amophous cores are possible candidates.
- ✓ UNIFLEX Smart Grid: 3.3 kV, 2 kHz amorphous core, 92% eff.
- ✓ GE Substation: 13.8 kV, 20 kHz nanocrystalline core, 98% eff.
- ✓ EPRI DC Charger: 2.4 kV, 20 kHz ferrite core, 96% eff.
- ✓ ABB Traction: 15 kV, 1.8 kHz nanocrystalline core 95% eff.

Opportunities:

- Novel designs & converter topologies
- WBG devices, packaging, thermal management, insulation
- HF magnetics & windings

National Laboratory

Grid Component Workshop


 $Grid \longleftrightarrow Power \\ Electronics \\ HF Transformer \\ Powler \\ Electronics \\ HF Transformer \\ HF$

Cables and Conductors Challenge: Deliver affordable power to load centers

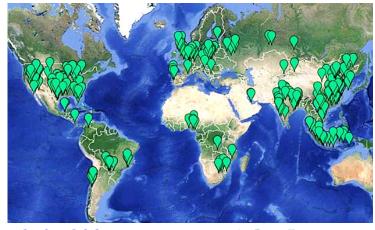
Conductors Status: **Reconductoring with** High-Temp-Low-Sag (HTLS)

- 2X ampacity
- Lower CTE, less sag ٠
- Higher strength to weight ٠
- Operation temp > 200°C ٠
- HTLS more expansive, but lower overall cost

3M-ACCR

200

ow Thermal Expansion & High Modulus


& Conductivity

250

Existing Conductor (ACSR 795)

Opportunities:

- Low cost HTLS utilizing advanced high strength / low resistance conducting materials
- Low cost coating for thermal management, anti-icing etc.

CTC-ACCC Projects

Cables: Functionalities vs Cost

DOE Superconducting Cables

<u>Albany National</u> <u>Grid AC</u>

- 350 m, 34.5 kV, 800 A_{rms}, 48 MVA
- 2G HTS wire section

Columbus AEP AC

- 200 m, 13.2 kV, 3000 A_{rms}, 69 MVA
- Triaxial concentric

- 600 m long, 138 kV, 2400 A_{rms}, 574 MVA
- Transmission voltage

ORNL R&D DC

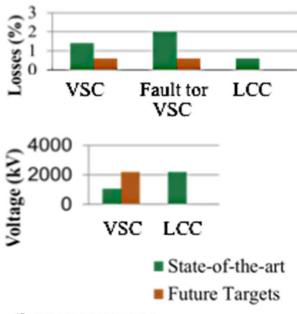
- 1 GW class
- Triax 2-layer
- Tested @ 9.5 kA, insulation 125 kV

Commercial:

e.g. ABB HVDC

 640 kV (±320 kV), 900 MW

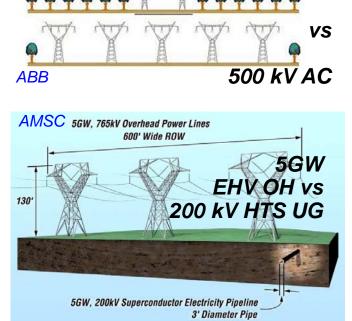
14 Grid Component Workshop


- Novel designs: reduce complexity, enhance reliability
- Insulations, thermal management
- HTS: Low AC loss, cryogenics

HVDC Conversion Challenge: High voltage/power, low loss, small footprint

HVDC: long distance, underground, submarine, asynchronous, controlled power transfer, reduced right-o-way.

LCC: Thyristors Large blocks: 1000s MW High voltage: 1000 kV Many filters



VSC: IGBTs Small blocks: 100s MW Lower voltage: 640 kV

MMC AAC CTL

Opportunities:

- Novel topologies, hybrid LCC-VSC?
- WBG-based converters
- Insulation and thermal management

+500 kV DC

National Laboratory

15 Grid Component Workshop

FACTS : Cost remains a major barrier

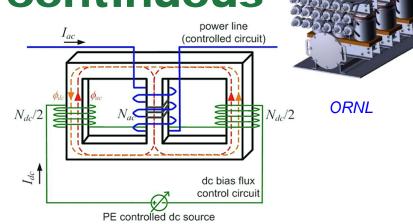
	1G FACTS	2G FACTS	3G FACTS	180
Typical Devices	SVC, TSC, TSR	TCSC, STAT- COM, SSSC	UPFC, IPFC	160 140 120
Function -alities	Reactive power compensation, voltage regulation,	Real/reactive power compensation, voltage/ current regulation, oscillation damping, limited dynamic and transient capability	Full power control, voltage/current control, oscillation damping, fault current limiting, full dynamic and transient capability	Fig. 3. Cost functions of the FACTS devices: SVC, TCSC and UPFC.
Control Type	Switching on/off or stepwise	Continuous	Continuous	: Upper limit: Total investment costs: Lower limit: Equipment costs Cai et al. U. Duisburg-Essen, DE

D-FACTS: Distributively installed, clamp on power lines.

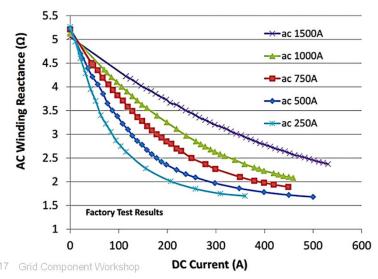
Work collectively to adjust line impedance.

e.g. Smart wire - distributed series reactors.TVA Knox-Douglas line,7.5 miles, 100 DFACTS, 1 yr

16 Grid Component Workshop


Opportunities:

- High power HV WBG devices
- Optimize DFACTS locations for efficiency and cost
 State Cost

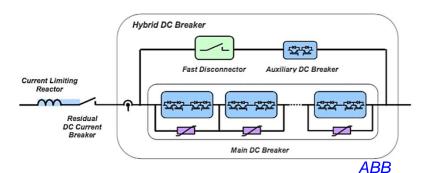

National Laboratory

Continuous Variable Series Reactor may provide low cost continuous flow control

- CVSR based on magnetic amplifier
- Power electronics (control circuit) electrically decoupled from power line (controlled circuit)

- A small current in control circuit produces bias flux that changes the reactance of main circuit & controls much larger current in power line.
- 1-Φ 115 kV, 1.5 kA prototype factory tested

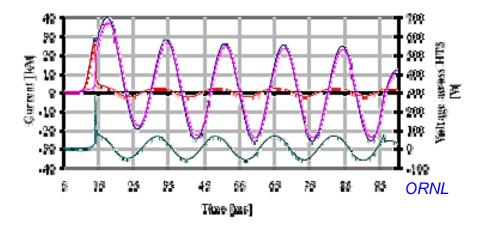
- Improve design for smaller, lighter, lower cost
- Additional capabilities of device with different control schemes


Protection Challenge: Changing systems architecture, variable generations n& faults

Emerging hybrid DC breakers are enablers for multi-terminal HVDC

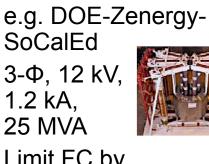
Hybrid breaker would interrupt faults rapidly, possess better frequency switching ability, exhibit low losses and require less space.

e.g. ABB hybrid DC breaker:


- A bypass branch auxiliary ss load commutation switch and ultra-fast mechanical disconnector & Main branch -- sections of ss DC breakers with arrester banks
- Normal operation: Current flows through bypass
- Fault:
 - 1) Auxiliary DC breaker commutates current to main breaker and disconnector opens.
 - 2) Main DC breakers break the current.
 - 5 ms opening time
- Alston ultra-fast "mechatronic" circuit breaker (UFMCB) Siemens DC commutation breaker (Metallic Return Transfer Breaker)

- Novel designs and topologies
- High power HV WBG
- Low loss compact SS CB

Fault Current Limiters are designed to limit faults rapidly and then automatically reset



Many superconducting FCL projects at distribution level:

<u>Resistive</u> e.g. AMPACITY –

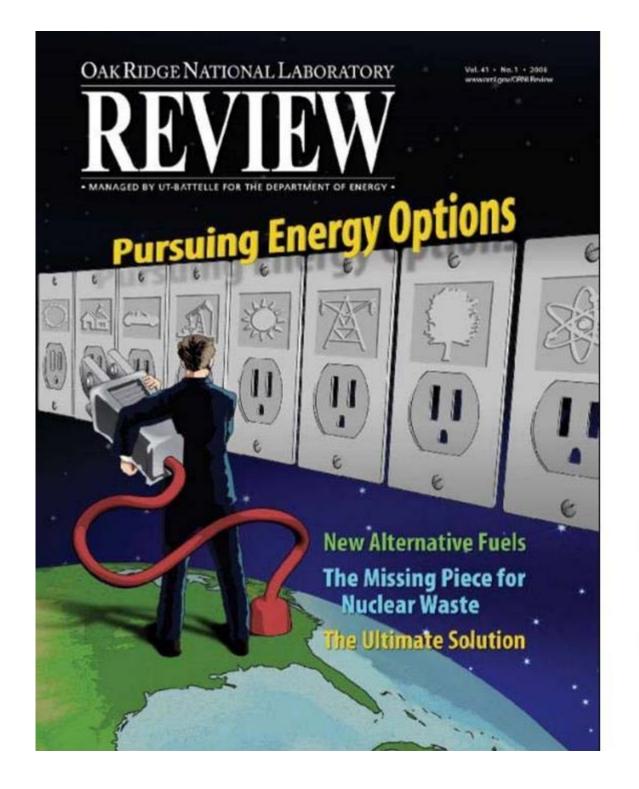
Essen DE $3-\Phi$, 10 kV, 2.3 kA, 40 MVA Limit 50 kA peak \rightarrow <13 kA in 100 ms

Induction

Limit FC by 20%

Opportunities:

- Innovative hybrid FCLs
- Transmission level SFCL
- High power/voltage WBG
 for SSFCL



Limited experience with solid-state FCL:

e.g. DOE-Silicon Power-EPRI

1-Φ, 15.5 kV, 1.2 kA, 25 MVA Limit 55 kA peak → 21.6 kA

Contact information:

Dominic Lee leedf@ornl.gov 865-241-0775

www.ornl.gov/eere