Driving microbial metabolism with electricity: challenges and opportunities in electrosynthesis

Jeffrey Gralnick
University of Minnesota
Department of Plant and Microbial Biology
Director, Microbial and Plant Genome Institute
gralnick@umn.edu
@bacteriality

ISF-2
DOE Listening Day
Outline

- Extracellular electron transfer and iron bacteria
- Reversing a dissimilatory metal reducing bacterium
- Domesticating new organisms for electrosynthesis
Electrodes

Anode

Cathode

e^-
e^-
Electrosynthesis

Cathode

Renewable Electricity

e^{-}
Outline

- Extracellular electron transfer and iron bacteria
- Reversing a dissimilatory metal reducing bacterium
- Domesticating new organisms for electrosynthesis
Shewanella – the *E. coli* of the Environment

S. oneidensis

Shewanella sp. ?

S. benthica

S. frigidimarina

Shewanella sp. ANA-3

S. amazonensis
Respiratory Diversity

- Oxygen
- Nitrate
- Nitrite
- TMAO
- DMSO
- Sulfur
- Fumarate
- Urocanate
- Chromium
- Selenium
- Arsenic
- Technetium
- Uranium
- Tellurium
- Cobalt
- Vanadium
- Manganese
- Iron
Respiratory Diversity

- Oxygen
- Nitrate
- Nitrite
- TMAO
- DMSO
- Sulfur
- Fumarate
- Urocanate
- Chromium
- Selenium
- Arsenic
- Technetium
- Uranium
- Tellurium
- Cobalt
- Vanadium
- Manganese
- Iron
Respiration of insoluble substrates

Iron Oxide

Manganese Oxide

“Extracellular Electron Transport”
Why is Extracellular Electron Transport Important?

- Respiration of *insoluble* substrates requires novel electron transfer pathways.

- EET allows the cell to respire electrodes to generate electricity, can also reverse flow *into* cells: *electrosynthesis*.
Respiration of insoluble substrates
Core conduit for EET in *Shewanella*

MtrF – a paralog of MtrC in *S. oneidensis*

Clarke et al., 2011 PNAS Jun 7;108(23):9384-9
Respiration of carbon electrodes by *Shewanella*

Lactate \rightarrow Acetate + ATP + $4e^- + 4H^+$
Electrode-dependent fumarate reduction

Outward Electron Flow

Reverse Electron Flow
Electrode-dependent fumarate reduction

![Graph showing current density against time with 50 mM fumarate addition.]

Ross et al., PLoS One, 2011
Electrode-dependent fumarate reduction requires FccA (the fumarate reductase)

Ross et al., PLoS One, 2011
The Mtr respiratory pathway catalyzes reversible electron transfer.
The Mtr respiratory pathway catalyzes reversible electron transfer
The quinone oxidoreductase CymA is required for robust inward electron flow.
The quinone oxidoreductase CymA is required for robust inward electron flow.
Menaquinone is important for robust inward electron flow

Ross et al., PLoS One, 2011
Shewanella cannot fix CO$_2$

Robust ATP and NAD(P)H production would require O$_2$ as an electron acceptor.

Anaerobic metabolism and EET are HIGHLY repressed by O$_2$.

Iron respiration is thought to be one of the earliest forms of respiration on Earth – that’s a lot of selection for sending electrons OUT of the system rather than in.
Iron

Fe(II) → e⁻ → Fe(III) → e⁻ → Fe(II)
Mariprofundus ferrooxydans PV-1

Founding member: Zetaproteobacteria
Obligate Fe(II) oxidizer
Neutrophillic
Chemolithoautotroph
RuBisCo used to fix CO$_2$

\[
\text{Fe}^{2+} + 0.25 \text{O}_2 + 2.5\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 2\text{H}^+
\]
Mari profundus ferrooxydans PV-1
Mariprofundus ferrooxydans PV-1

$\text{Fe}^2+ + 0.25 \text{O}_2 + 2.5\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 2\text{H}^+$
If the mechanism of obtaining e^- from Fe(II) is extracellular, we should be able to replace Fe(II) with a cathode.
Growth of *Mariprofundus* using a cathode

Summers et al., mBio, 2013
Growth of *Mariprofundus* using a cathode

Summers et al., *mBio*, 2013
Microbial Biocatalysis

• Self-sufficient
• Self-replicating
• Self-contained
• Self-optimizing
• Can be manipulated using synthetic biology and genetics

Bioelectrochemical Catalysis
Acknowledgements

• Clara Chan, University of Delaware
• Daniel Bond, University of Minnesota

@bacteriality