Appendix G Sediment Quality Evaluation Technical Memorandum

LEEDCo Sediment Evaluation, Icebreaker Demonstration Wind Project, Lake Erie near Cleveland, Ohio

PREPARED FOR:	Lake Erie Energy Development Corporation
PREPARED BY:	CH2M HILL, Inc.
DATE:	March 10, 2017

This technical memorandum summarizes the screening evaluation performed on sediment analytical data collected as part of the environmental baseline study for the Icebreaker Demonstration Wind Project proposed by Lake Erie Energy Development Corporation (LEEDCo). This evaluation was conducted to determine sediment quality within the project area, which is in Lake Erie near Cleveland, Ohio.

Project Background

The Icebreaker Demonstration Wind Project proposed by LEEDCo is the first offshore wind demonstration project within freshwater of the Great Lakes. The project location is 8 to 10 miles offshore from Cleveland, Ohio and will include six 3.45-megawatt wind turbine generators spaced approximately 756 meters apart.

A baseline environmental study was performed for this project and included collecting sediment samples within the project area to determine sediment quality. TDI Brooks International (TDI) conducted the field sampling from September 12 through October 10, 2016. The sampling report is included as Attachment 1. TDI collected three piston core composites and one box core composite for a total of four samples for analysis of grain size, total organic carbon, trace metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides.

Sediment Quality Evaluation Approach

The sediment analytical results were evaluated to determine the existing sediment quality within the project area. The evaluation followed the Tier I screening outlined in *Guidance on Evaluating Sediment Contaminant Results* (Ohio Environmental Protection Agency 2010). The screening evaluation included comparisons to threshold effects concentrations (TECs) and probable effects concentrations (PECs) (MacDonald et al. 2000). Threshold effect levels such as TECs are conservative screening values that represent a level below which there would be a high confidence of no adverse effects, but above which unacceptable risk is uncertain. Constituent concentrations that exceeded TECs were then compared to PECs. The PECs represent a level above which there is a reasonable likelihood of adverse effects.

Subsequently, samples also were evaluated on a sample-by-sample basis to look at combined effects of chemical mixtures. Ingersoll et al. (2001) evaluated the ability of consensus-based sediment quality guidelines and compared approaches for evaluating the combined effects of chemical mixtures on the toxicity of field-collected sediment. Ingersoll et al. (2001) showed that because field-collected sediment contains chemical mixtures, the predictability of sediment assessments increases when sediment quality guidelines, such as PECs, are used in combination to classify toxicity.

Using this approach for each detected constituent, a probable effect concentration quotient (PEC-Q) was developed by dividing the concentration of each constituent by the PEC. A mean quotient was then calculated for each sample by summing the individual quotient for each constituent and dividing this sum by the number of PECs evaluated. Ingersoll et al. (2001) demonstrated that the incidence of toxicity increases with increasing mean PEC-Qs. For example, in the *Hyallela azteca* (amphipod) 28- to 40-day tests, the incidence of toxicity was 10 percent for samples with mean PEC-Qs less than 0.1; 31 percent for samples with mean PEC-Qs between 0.1 and 1; 96 percent for samples with mean PEC-Qs greater than 5.

Similar increase in incidence of toxicity was encountered in *Chironomus dilutus* (midge) 10- to 14-day toxicity tests, where the incidence in toxicity was 20 percent for samples with mean PEC-Qs less than 0.1; 21 percent for mean PEC-Qs between 0.1 and 1; 43 percent for samples with mean PEC-Qs between 1 and 5; and 68 percent for samples with mean PEC-Qs greater than 5 (Ingersoll et al. 2001). Based on these results, the incidence of toxicity can be classified as minimal for PEC-Qs less than 0.1, low to moderate for mean PEC-Qs between 0.1 and 1, moderate to high for mean PEC-Qs between 1 and 5, and high for mean PEC-Qs greater than 5.

Sediment Quality Evaluation Results

TEC and PEC Screening Results

Tables 1, 2, and 3 summarize the screening evaluation for metals, PAHs, PCBs, and organochlorine pesticides. For metals, the TEC was exceeded in one or more samples for all metals with nickel exceeding the respective screening value in all four samples. Nickel was the only metal detected above the respective PEC screening value (Table 1).

PAHs were evaluated individually and based on a total PAH concentration (calculated using the high-priority 16 PAHs). The TEC for total PAHs was exceeded in three of the four composite samples; however, the PEC was not exceeded in any composite samples (Table 2).

Total PCBs were detected in two of the four composite samples above the TEC but did not exceed the PEC for any sample (Table 3).

Total dichlorodiphenyl trichloroethane (DDT) and sum dichlorodiphenyl dichloroethylene (DDE) (the summation of 2,4'-DDE and 4,4'-DDE) exceeded their respective TEC in one sample each; however, no constituent exceeded the respective PEC.

Mean PEC-Quotient Evaluation

Table 4 presents the mean PEC-Q results. The results indicate that no stations pose a moderate to high or high incidence of toxicity to aquatic organisms. Three stations had mean PEC-Qs between 0.1 and 1 (indication low to moderate incidence of toxicity), and one station had mean PEC-Q less than 0.1, indicating minimal incidence of toxicity. Overall, the incidence of toxicity for sediments within the project area would be considered low.

Summary

The sediment quality evaluation was performed on four composite samples collected from the proposed LEEDCo project area within Lake Erie. Only nickel exceeded its respective PEC in one composite sample. Overall, there is low potential for toxicity in the project area, based on the low frequency of PEC exceedance and the mean PEC-Q evaluation results. As a result, aquatic receptors will not likely be impacted by disturbed sediment during the construction activities within the project area.

References

Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C.G. Severn, D.E. Smorong. 2001. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. *Arch Environ Contam Toxicol* 41:8-21.

MacDonald. D.D., C.G. Ingersoll, and T. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. *Arch Environ Contam Toxicol* 39:20-31.

Tables

Table 1. Comparison of Sediment Metals Results to Freshwater Sediment Quality Guidelines

Laboratory ID LED0043 Laboratory ID XX-3122 Sample ID(s) PC01R, PC02, PC03 Sample Extraction Date 10/12/16		LED0044 XX-3123 PC04, PC05R1, PC06R2, PC07 10/12/16	LED0045 XX-3124 PC09, PC10 10/12/16	LED0046 XX-3125 BC01, BC02, BC03 10/12/16	Consensus Based TEC* (mg/kg DW)	Consensus Based PEC* (mg/kg DW)
Metals (mg/kg DW)						
Arsenic	13.1	13.9	14.6	8.21	9.79	33
Cadmium	0.17	0.24	0.51	1.94	0.99	4.98
Chromium	18.6	19	26.1	53.1	43.4	111
Copper	22.6	26.8	42.4	47.7	31.6	149
Lead	11.8	16	24	44.9	35.8	128
Mercury	0.0138	0.0173	0.0354	0.335	0.18	1.06
Nickel	30.3	30.2	34.1	51.4	22.7	48.6
Zinc	72.7	111	116	204	121	459

LEEDCo Sediment Evaluation, Icebreaker Demonstration Wind Project, Lake Erie near Cleveland, Ohio

Notes:

* MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39, 20-31.

Bolded values > TEC

Bolded and shaded values > PEC

TEC = threshold effects concentration

PEC = probable effects concentration

mg/kg DW = milligrams per kilogram, dry weight

Table 2. Comparison of Sediment PAH and PCB Results to Freshwater Sediment Quality Guidelines

Laboratory ID Sample ID(s)	LED0037,D PC01R, PC02, PC03	LED0038 PC04, PC05R1, PC06R2, PC07	LED0039 PC09, PC10	LED0046 BC01, BC02, BC03	Consensus Based TEC* (µg/kg DW)	Consensus Based PEC* (µg/kg DW)
Polycyclic aromatic hydrocarbons (µg/kg DW)						
Sample Extraction Date	11/7/16	11/7/16	11/7/16	11/7/16		
Acenaphthylene ¹	1.22	237	55.8	32.4	5.87	NSV
Acenapthene ¹	2.03	66.5	37.9	8.7	6.71	NSV
Anthracene	0.546	435	140	49.4	57.2	845
Benz[a]anthracene	1.65	1860	242	135	108	1,050
Benzo[a]pyrene	2.64	1807	187	154	150	1,450
Benzo[b]fluoranthene ²	10.3	1264	254	214	27.2	NSV
Benzo[k]fluoranthene ¹	0.9	767	150	177	240	NSV
Benzo[ghi]perylene ¹	10.5	932	108	128	170	NSV
Chrysene	63.9	2243	333	208	166	1,290
Dibenz[a,h]anthracene	1.16	376	35.8	37.1	33	140
Fluoranthene	6.94	1838	514	279	423	2,230
Fluorene	13	71.3	61.5	26.5	77.4	536
Indeno[1,2,3-cd]pyrene ¹	0.981	629	100	122	200	NSV
Naphthalene	4.47	84.9	66.8	50.2	176	561
Phenanthrene	82.4	500	359	122	204	1,170
Pyrene	8.51	2,198	411	228	195	1,520
Total PAHs ³	211	15,309	3056	1971	1,610	22,800
Polychlorinated biphenyls (µg/kg DW)						
Sample Extraction Date	11/9/16	11/9/16	11/9/16	11/9/16		
Total PCBs	0.98 J	15.9	401.17	77.05	59.8	676

LEEDCo Sediment Evaluation, Icebreaker Demonstration Wind Project, Lake Erie near Cleveland, Ohio

Notes:

* MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39, 20-31.

Bolded values > TEC

Bolded and shaded values > PEC

¹TEC Value selected from: U.S. EPA 2003. USEPA Region V Ecological Screeing Levels. August.

² TEC value selected from: U.S. Environmental Protection Agency. 2006. Region 3 BTAG Freshwater Sediment Screening Benchmarks.

http://www.epa.gov/reg3hwmd/risk/eco/index.htm. August.

³ Total PAHs calculated uising the 16 PAHs

NSV = no screeing value

 μ g/kg DW = micrograms per kilogram, dry weight

Table 3. Comparison of Sediment Organochlorine Pesticide Results to Freshwater Sediment Quality Guidelines

Laboratory ID	LED0037	LED0038	LED0039	LED0046	Consensus	Consensus
Sample ID(s)	PC01R, PC02, PC03	PC04, PC05R1, PC06R2, PC07	PC09, PC10	BC01, BC02, BC03	Based TEC*	Based PEC*
Sample Extraction Date	11/9/16	11/9/16	11/9/16	11/9/16	(µg/kg DW)	(µg/kg DW)
Organochlorine pesticides (µg/kg DW)						
Alpha- Chlordane ¹	0.02 J	0.32	<0.05 U	0.38	3.24	17.6
Dieldrin	<0.05 U	<0.05 U	<0.05 U	0.18	1.90	61.8
Sum DDD ²	0.23	0.455	<0.05 U	0.635	4.88	28
Sum DDE ³	0.035	0.21	2.13	3.92	3.16	31.3
Sum DDT ⁴	0.12	0.05	0.05	0.12	4.16	62.9
Total DDTs ⁵	0.385	0.715	2.23	4.67	5.28	572
Endrin	<0.06 U	<0.06 U	<0.06 U	<0.06 U	2.22	207
Heptachlor epoxide	<0.06 U	<0.06 U	<0.06 U	0.11	2.47	16
Gamma-HCH ⁶	0.20	<0.04 U	<0.04 U	0.85	2.37	4.99

LEEDCo Sediment Evaluation, Icebreaker Demonstration Wind Project, Lake Erie near Cleveland, Ohio

Notes:

* MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39, 20-31.

Bolded values > TEC

¹ Compared to screening guideline for chlordane

² Sum of 2,4'-DDD and 4,4'-DDD compared to Sum DDD screening value

³ Sum of 2,4'-DDE and 4,4'-DDE compared to Sum DDE screening value

⁴ Sum of 2,4'-DDT and 4,4'-DDT compared to Sum DDT screening value

⁵ Sum of DDD, DDE, and DDT isomers compared to Total DDT screening value

⁶ Compared to screening guideline for gamma-BHC (lindane)

 μ g/kg DW = micrograms per kilogram, dry weight

Table 4. Mean PEC-Q Evaluation

LEEDCo Sediment Evaluation, Icebreaker Demonstration Wind Project, Lake Erie near Cleveland, Ohio

Laboratory ID	LED0043		LED0044		LED0045		LED0046		Consensus
Laboratory ID	XX-3122		XX-3123		XX-3124		XX-3125		Based PEC*
Sample ID(s)	PC01R, PC02, PC03	PEC-Q	PC04, PC05R1, PC06R2, PC07	PEC-Q	PC09, PC10	PEC-Q	BC01, BC02, BC03	PEC-Q	(µg/kg DW)
Metals (mg/kg DW)									
Arsenic	13.1	0.397	13.9	0.42	14.6	0.442	8.21	0.249	33
Cadmium	0.17	0.034	0.24	0.05	0.51	0.102	1.94	0.390	4.98
Chromium	18.6	0.168	19	0.17	26.1	0.235	53.1	0.478	111
Copper	22.6	0.152	26.8	0.18	42.4	0.285	47.7	0.320	149
Lead	11.8	0.092	16	0.13	24	0.188	44.9	0.351	128
Mercury	0.0138	0.013	0.0173	0.02	0.0354	0.033	0.335	0.316	1.06
Nickel	30.3	0.623	30.2	0.62	34.1	0.702	51.4	1.058	48.6
Zinc	72.7	0.158	111	0.24	116	0.253	204	0.444	459
Polycyclic aromatic hydrocarbons (µg/kg DW)									
Total PAHs	211	0.009	15,309	0.67	3,056	0.134	1,971	0.086	22,800
Polychlorinated biphenyls (µg/kg DW)									
Total PCBs	0.98 J	0.001	15.9	0.02	401.17	0.593	77.05	0.114	676
Organochlorine pesticides (µg/kg DW)									
Alpha- Chlordane	0.02 J	0.001	0.32	0.02	<0.05 U	0.003	0.38	0.022	17.6
Dieldrin	<0.05 U	0.001	<0.05 U	0.00	<0.05 U	0.001	0.18	0.003	61.8
Sum DDD	0.23	0.008	0.455	0.02	<0.05 U	0.002	0.635	0.023	28
Sum DDE	0.035	0.001	0.21	0.01	2.13	0.068	3.92	0.125	31.3
Sum DDT	0.12	0.002	0.05	0.00	0.05	0.001	0.12	0.002	62.9
Total DDTs	0.385	0.001	0.715	0.00	2.23	0.004	4.67	0.008	572
Endrin	<0.06 U	0.000	<0.06 U	0.00	<0.06 U	0.000	<0.06 U	0.000	207
Heptachlor epoxide	<0.06 U	0.004	<0.06 U	0.00	<0.06 U	0.004	0.11	0.007	16
Gamma-HCH	0.20	0.040	<0.04 U	0.01	<0.04 U	0.008	0.85	0.170	4.99
Mean PEC-Q		0.09		0.14		0.16		0.22	

Notes:

* MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* 39, 20-31. For nondetected constituents, the detection limit was used.

PEC-Q = Probable effect concentration quotients

No Highlights = Mean PEC-Q < 0.1 = minimal incidence of toxicity

Highlighted Yellow = Mean PEC-Q between 0.1 and 1.0 = low to moderate toxicity

Mean PEC-Q between 1.0 and 5.0 - moderate to high incidence of toxicity (no samples identified in this category)

Mean PEC-Q greater than 5 = high incidence of toxicity (no samples identified in this category)

µg/kg DW = micrograms per kilogram, dry weight

mg/kg DW = milligrams per kilogram, dry weight

Attachment 1 Environmental Baseline Survey Data Report, January 2016

Scientific Services on a Global Basis TDI-Brooks International, Inc.

Environmental Baseline Survey Data Report

Wind Turbine Generator Alignment Icebreaker Wind Demonstration Project Lake Erie

Technical Report 16-3634

Submitted by

TDI-Brooks International, Inc. 14391 South Dowling Rd College Station, TX 77845 USA

Lake Erie Energy Development Corporation

January 2016

Table of Contents

	Page
1 INTRODUCTION	
1.1 PROJECT BACKGROUND	
1.2 SCOPE OF WORK	
1.3 SURVEY GEAR	
1.4 FIELD PROGRAM	
1.5 PROJECT DATUMS AND WTG LOCATIONS	
2 FIELD RESULTS	
2.1 CORE LOCATIONS	
3 Laboratory Methods	
3.1 Sediment	
3.1.1 Extraction	
3.1.2 PAH	
3.1.3 Aliphatic Hydrocarbon	
3.1.4 Chlorinated Hydrocarbons	
3.1.5 Total Organic Carbon	
3.1.6 Grain Size	
3.1.7 Trace Metal	
4 Results	
4.1 Sediment Hydrocarbons	
4.2 SEDIMENT CHLORINATED HYDROCARBONS	
4.3 SEDIMENT TOTAL ORGANIC CARBON	
4.4 GRAIN SIZE	
4.5 SEDIMENT I RACE METALS	
5 Appendices.	
5.1 APPENDIX A – POLYCYCLIC AROMATIC HYDROCARBON - PAH	
5.2 Appendix B - Aliphatic Hydrocarbons	
5.3 APPENDIX C - CHLORINATED HYDROCARBONS	
5.4 APPENDIX D - I OTAL URGANIC CARBON	
5.5 APPENDIX E – GRAIN SIZE	
5.6 APPENDIX F – I RACE METALS	

List of Tables

	Pa	ge
Table 1-1.	Seabed Tool Sampling Dimensions	3
Table 2-1.	Collection Information for the Accepted Composite Core Samples.	7

List of Figures

	Page
Figure 1-1. Project location.	2
Figure 1-2. Inner array (A) and Export cable route (B).	2
Figure 1-3. Inshore and In-Harbor.	3
Figure 1-4. Sampling locations for the field effort.	4
Figure 1-5. Sediment types at the sampling locations.	5
Figure 2-1. Composite core collection locations.	6

1 INTRODUCTION

This document presents the results from the environmental baseline study (EBS) completed by TDI-Brooks International (TDI) for the Lake Erie Energy Development Corporation (LEEDCo). The field operations were performed from 12 September through 10 October 2016. The EBS program consisted of the following samples/acquisitions:

- Three (3) piston core composites
 - PC01R, PC02, PC03
 - PC04, PC05R1, PC06R2, PC07
 - PC09, PC10
- One (1) box core composite
 - o BC01, BC02, BC03

The EBS investigation was conducted from the **Salvage Chief**, mobilized and demobilized in Cleveland, Ohio. The field work was conducted in water depths ranging from 22 to 66 ft. TDI-Brooks mobilized and operated the sample collection equipment.

1.1 PROJECT BACKGROUND

The Icebreaker Demonstration Wind Project is proposed by Lake Erie Energy Development Company (LEEDCo) as the first offshore wind demonstration project in the freshwater Great Lakes. The Icebreaker project is located approximately 13.1 to 17.8 km offshore from Cleveland.

The project will include six, 3.45-MW wind turbine generators (WTGs) spaced about 756 meters apart and located along a north- northwest to south-southeast alignment.

The planned six WTG positions are designated as ICE1 through ICE6 (numbered from southeast to northwest) and one alternate position (to the northwest of ICE6) is designated as ICE7. Each of the WTGs will be supported by a mono-pole substructure founded on a suction bucket foundation (mono-bucket).

Energy generated from the WTGs will be transmitted through an export cable from the offshore project area to shore. The in-harbor portion of the export cable will be installed within a horizontally directional drilled (HDD) casing Water depths at test locations increase from southeast to northwest and vary from about 17.4 to 18.8 meters relative to IGLD85 low water datum (LWD). The surveyed area surrounding the seven investigated turbine locations is about 0.3 km wide by 6.5 km long.

1.2 SCOPE OF WORK

LEEDCo required environmental data collection, processing and reporting together with geotechnical exploration and interpretation (Figure 1-1, Figure 1-2 and Figure 1-3).

Figure 1-1. Project location.

The scope of work was intended to provide suitable lake-bottom and subsurface definition to finalize cable route alignments, design and plan for the cable route installation. In addition, the activities in the Cleveland Harbor and immediately to the north of the Cleveland Breakwater will be used for the evaluation, design and construction of the Horizontally Directionally Drilled (HDD) shore crossing.

This document provides the information on the collection of the data, the tools used, the procedures completed and the data results for the EBS investigation at this site.

Figure 1-2. Inner array (A) and Export cable route (B).

Figure 1-3. Inshore and In-Harbor.

1.3 SURVEY GEAR

The survey gear mobilized by TDI-Brooks for this EBS field campaign, together with the tool barrel lengths and sampling depths for the set of seabed sampling tools used for this project are presented in **Table 1-2**.

TDI-Brooks Seabed Tool Name	Tool Acronym	Tool Length (ft)	Typical Depth Reached BML (ft)				
Coring Tools							
Extended Box Core (1.6x1.6x3.3-ft)	XBC	Box: 3.3	3.0				
Piston Core (3-in. dia.)	PC	20	18				

Table 1-1. Seabed Tool Sampling Dimensions.

These systems were mobilized with sufficient redundancy of components for replacement of damaged parts and/or for complete replacement of a tool. A minimum 50% redundancy of core barrel sections was onboard. Consumables sufficient for at least 120% of the samples proposed to be collected were also mobilized. Further details on the Survey Gear can be found in TDI's *"LEEDCo- Geotechnical Survey- Lake Erie- Technical Report 16-3585"*.

1.4 FIELD PROGRAM

An overview of the seabed sampling locations for this program is presented in **Figure 1-4** and sediment characteristics at the sites in **Figure 1-5**

1.5 PROJECT DATUMS AND WTG LOCATIONS

The project datums are:

- Horizontal WGS84, UTM Zone 17N, meters
- Vertical International Great Lakes Datum (IGLD) 1985, LWD meters

Icebreaker Demonstration Wind Project Cable Route Survey - Geotechnical Samples

Figure 1-4. Sampling locations for the field effort.

Figure 1-5. Sediment types at the sampling locations.

2 FIELD RESULTS

2.1 CORE LOCATIONS

Figure 2-1 displays the composite core collection locations. **Table 2-1** presents a listing of the collection information for each of the accepted composite core samples. The information is presented by the sample (core) ID. The table presents the client-specified information on the left (grey), and the as-built information on the right.

Figure 2-1. Composite core collection locations.

			Acquired Sample Locations		Target Locations		
Target ID	Sample ID	Sample Type	E	Ν	E	Ν	Dist to Trgt (m)
PC1	PC1b	PC	434942.25	4604828.09	435031.01	4604784.41	98.9
PC2	PC2a	PC	436784.38	4603817.37	436777.67	4603802.64	16.2
PC3	PC3b	PC	438525.79	4602826.18	438523.81	4602824.58	2.5
PC4	PC4a	PC	440384.70	4601779.86	440387.00	4601780.31	2.3
PC5	PC5b	PC	442016.42	4600867.05	442018.41	4600866.46	2.1
PC6	PC6c	PC	443758.40	4599884.95	443756.89	4599888.81	4.1
PC7	PC7a	PC	444163.35	4599654.41	444167.04	4599653.44	3.8
PC9	PC9a	PC	444208.73	4598686.27	444210.73	4598684.88	2.4
PC10_2	PC10b	PC	444378.84	4599024.11	444382.80	4599023.05	4.1
BC1	BC1a	BC	433284.82	4605758.01	433287.22	4605755.68	3.3
BC2	BC2a	BC	432386.65	4606973.32	432386.11	4606970.91	2.5
BC3	BC3a	BC	431486.43	4608180.67	431485.31	4608186.54	6.0

 Table 2-1. Collection Information for the Accepted Composite Core Samples.

All coordinates are in WGS84 UTM Zone 17 N

3 LABORATORY METHODS

3.1 SEDIMENT

3.1.1 Extraction

An automated extraction apparatus (Dionex ASE200 Accelerated Solvent Extractor) was used to extract various organics (PAH/TPH) from 1 to 15 g of a pre-dried, homogenous sample. All appropriate surrogates and spiking solutions were added. The extractions were performed using 100% dichloromethane inside stainless-steel extraction cells held at elevated temperature and solvent pressure. The extracted compounds dissolved in the hot solvent were collected in 60-mL glass vials.

The following ASE extraction conditions were used to extract the sediments:

Extraction solvent:	100% dichloromethane
Solvent pressure:	1,500 psi
Cell temperature:	100°C
Cell pre-heat time:	5 min (non-adjustable pre-set for 100°C)
Static pressure time:	2 min
Static cycles:	2 ea
Solvent flush:	60% of cell volume each cycle
Nitrogen purge time:	90 sec at end to dry cell
Method rinse:	ON (between samples)
Total extraction time:	approximately11 min/cell

The solvent in the glass vials was concentrated in a 55 - 60° C water bath until the solvent was reduced in volume to approximately 5-10 mL. The extract was transferred into a Kurderna-Danish (KD) concentrator tube. The sample volume was reduced to 0.5 mL in a 55 - 60° C water bath. The extract was then submitted for instrument analysis.

3.1.2 PAH

The quantitative method for the determination of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues in extracts of sediment was performed by capillary gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). The gas chromatograph was temperature-programmed and operated in splitless mode. The capillary column was an Agilent Technologies HP-5MS (60 m long by 0.25 mm ID and 0.25 μ m film thickness). Carrier flow was by electronic pressure control. The mass spectrometer scanned from 35 to 500 AMU every second or less and utilized 70 volts electron energy in electron impact ionization mode. The data acquisition system acquired and stored all data during analysis.

Calibration solutions were prepared at six concentrations ranging from 0.02 to 6 μ g/mL by diluting a commercially available solution containing the analytes of interest. For each analyte of interest, a relative response factor (RRF) was determined for each calibration level. The 6 response factors were then averaged to produce a mean relative response factor for each analyte.

An analytical set contained standards, samples, and quality control samples. Each extraction batch was analyzed as an analytical set including samples and some or all of the following quality control samples: method-blank, duplicate, matrix-spike, matrix-spike duplicate, and standard reference material.

3.1.3 Aliphatic Hydrocarbon

The quantitative method for the determination of aliphatic hydrocarbons in extracts of sediment was performed by high resolution, capillary gas chromatography with flame ionization detection (GC/FID). Normal alkanes with 8 to 40 carbons (C_8 to C_{40}), and the isoprenoid series from i-C13 to i-C20 were determined with this procedure. The gas chromatograph was temperature-programmed and operated in split mode. The capillary column was a Restek Scientific RTX-1 (30 m long by 0.25 mm ID and 0.25 μ m film thickness). Carrier flow was regulated by electronic pressure control. The autosampler was capable of making 1 to 5 ml injections. Dual columns and FIDs were used. The data acquisition system was by HP Chemstation software, capable of acquiring and processing GC data.

A calibration curve was established by analyzing each of 6 calibration standards (1.25, 10, 25, 40, 50 and 100 μ g/ml), and fitting the data to a straight line using the least square technique. For each analyte of interest, a response factor (RF) was determined for each calibration level. All 6 response factors were then averaged to produce a mean relative response factor for each analyte. If an individual aliphatic hydrocarbon was not in the calibration solutions, a RF was estimated from the average RF of the hydrocarbon eluting immediately before the compound.

An analytical set consists of standards, samples, and quality control samples. Each extraction batch was analyzed as an analytical set including samples and some or all of the following quality control samples: method blank, duplicate, matrix spike, matrix spike duplicate and standard reference material.

3.1.4 Chlorinated Hydrocarbons

The quantitative method described in this document is for the determination of chlorinated hydrocarbons (PCBs and chlorinated pesticides) in extracts. Quantitation is performed by gas chromatography/electron capture detector (GC/ECD). The gas chromatograph is temperature-programmed and operated in splitless mode. The capillary column is a J&W DB-5[®] (30 m long by 0.25 mm ID and 0.25 μ m film thickness). Carrier flow is by electronic pressure control. The autosampler is capable of making 1 to 5 μ l injections. Dual columns and ECDs are used. The data acquisition system is by HP Chemstation software, capable of acquiring and processing GC data.

Calibration solutions are prepared at six concentrations ranging from 5 to 500 pg/ μ l by diluting a commercially available solution containing the analytes of interest. An Aroclor mixture consisting of Aroclor 1242, 1248, 1254 and 1260 is used as a retention time index solution for individual PCBs not found in the calibration solution. The individual PCB retention times are determined based on pattern recognition. A calibration curve is established by analyzing each of 6 calibration standards (5, 20, 40, 80, 200, and 500 pg/ μ l), and fitting the data to a quadratic equation.

An analytical set consists of standards, samples, and quality control samples. Each extraction batch is analyzed as an analytical set including samples and some or all of the following quality control samples: procedural blank, duplicate, matrix spike, matrix spike duplicate or blank spike, blank spike duplicate, and standard reference material.

3.1.5 Total Organic Carbon

Total organic carbon was determined in oven-dried, acid treated sediments using a LECO CR-412 Carbon Determinator. Samples were acid treated by adding 50% v/v of phosphoric acid to remove any inorganic carbon. Dried sediment was combusted at $1,350^{\circ}$ C under an oxygen atmosphere and carbon present in the samples is oxidized to form CO₂ gas. This sample gas then flowed through two scrubber tubes. The first tube contained Anhydrone (Mg(ClO₄)₂), AR610 (halogen trap), and tin or copper granules to remove water and any chlorine gas, respectively. The second tube contained Anhydrone, which removes residual moisture. The sample gas then flowed through a nondispersive infrared (NDIR) detection cell.

In the NDIR detector cell, infrared energy is emitted from a nichrome wire heated to 850° C. Radiant energy enters the cell through a calcium fluoride window and projects through the cell chamber, which contains carrier or sample gas. Gases absorb infrared energy as they pass through the cell chamber. As energy exits the cell chamber through a second calcium fluoride window, a precise wavelength filter selectively blocks all wavelengths except that of CO₂ from passing into the detector. The detector responds to the energy changes between the carrier gas and sample gas and ultimately determines the concentration of the carbon contained in the sample.

Prior to analysis, the instrument establishes a baseline. As analysis proceeds, the integrated area under the signal detected is proportional to the amount of CO_2 passing through the NDIR cell. The computer reads the cell output nine times per second and provides a linearized output. The weight-corrected result is the total weight percent of carbon.

3.1.6 Grain Size

The large or coarse fraction was determined by sieving and the fine fraction was analyzed by hydrometer analysis, both according to ASTM D422. The coarse fraction is defined as sediment retained on the #200 sieve; the fine fraction is sediment passing the #200 sieve. Samples were prepared according to ASTM D421. Samples were dried in a 40°C oven in order to obtain the dry weight. Approximately 50 g of dry sample was obtained and grains were moderately disaggregated using a mortar and pestle. The sample was then soaked in 125 mL of 40 g/L sodium hexametaphosphate solution (dispersing agent) for more than 16 hours in a 1 L graduated cylinder, agitating occasionally, to complete the disaggregation process. Distilled water was then added to the solution until the total volume of the mixture (water, solution, and sample) was 1 L. The entire sample (coarse and fine fractions) was agitated in the graduated cylinder for 1 minute. Upon completion of the agitation, hydrometer readings were taken over a period of 24 hours.

Following hydrometer analysis, the samples were wet sieved. The solution was poured through a sieve set complying with ASTM D422, with the #200 sieve at the bottom of the stack. The sample was rinsed through the sieve to ensure all clay and silt particles were not retained by means of cohesion with larger grains. The sieves were placed in a 40°C oven, and the dry mass of sediment retained on each sieve in the set was obtained.

3.1.7 Trace Metal

Sediment samples were received and kept refrigerated until further processing. Sediment samples were homogenized and a representative, sub-aliquot was taken for leaching (digestion) processing. Each aliquot was freeze-dried and the percent moisture determined. Each aliquot was then manually ground to a homogeneous fine powder using a mortar and pestle. The finely ground sediment samples were then ready for further processing.

Approximately 0.2 g. of sample was placed in a clean ~ 70 mL polypropylene snap capped (perforated) container to which ~ 0.6 ml of concentrated, ultrapure HNO₃ and ~ 1.4 ml ultrapure HCl were added. Each container was closed and subjected to a heated, strong acid leach by placing in a block digester. The temperature of the hot plate was adjusted to 95 deg. C. The samples were allowed to reflux for 7-8 hours. The samples were cooled. Each digested sample was then transferred quantitatively to a 50 ml polypropylene tube using multiple deionized water rinses to achieve a final volume of ~ 20 ml (i.e. approximate dilution factor of 100. The leachate (digestate) was diluted another 10 fold (i.,e. approximate final, analytical dilution factor of 1,000) with deionized water to achieve an acid strength compatible with ICP-MS analysis. Iron was determined using an analytical dilution of ~ 400,000.

Metals concentrations were determined in the sediment leachate according to EPA** method 200.8 (ICP-MS). Reporting units are micrograms per gram (parts per million, ppm) on a dry weight basis. All metals were determined by standard mode ICP-MS except that chromium (Cr), iron (Fe), and vanadium (V) were determined by method 200.8 modified for dynamic reaction cell (DRC)-ICP-MS using ammonia as the cell gas. Arsenic (As) was determined by DRC-ICP-MS using oxygen as the cell gas. DRC-ICP-MS are interference control technologies that minimize the overestimation of trace metals levels associated with

isobaric interferences that can occur with standard mode ICP-MS. Isobaric interferences are a significant concern especially for marine sediment samples with elevated levels of calcium, sodium and chloride.

The heated, strong acid leach digestion used for this study is not a total digestion (i.e. using hydrofluoric acid) quantifying all of a given element present in the sediment matrix. The percentage of metal leached into solution for analysis varies by element. For example, for the more refractory metals (e.g. Cr, V) only a relatively small percentage is leached into solution for analysis. For many other elements (including many pollutant metals) that are largely adsorbed onto the sediment particles, a much higher percentage is leached into solution for analysis. A marine sediment reference material was used to estimate the percentage of each element leached into solution for analysis. The percentage released is compared to an historical percentage that is typically observed for such a heated strong acid leach.

The same freeze-dried, finely powdered sediment samples were used for separate mercury (Hg) analysis. Mercury was determined according to EPA method 7473. EPA method 7473 is a direct analysis method involving thermal decomposition, amalgamation (on a gold trap) followed by and atomic absorption spectrophotometry. Approximately 0.05-0.06 g of dry sediment is placed in a ceramic boat and carried through a high temperature heating process that volatilizes all Hg in the sample. Reporting units are micrograms per gram (parts per million, ppm) on a dry weight basis. A marine sediment reference material is carried through the same analytical process as a check on volatilization efficiency and data accuracy. EPA method 7473 is considered a total Hg method that produces data representing the total Hg present in each sample.

** All references in this report to EPA and EPA methods are referring to the USA government agency.

4 RESULTS

4.1 SEDIMENT HYDROCARBONS

Oil is a complex mixture of > 75% petroleum hydrocarbons and other organic compounds (Laflamme & Hites, 1978). Petroleum hydrocarbons can be broadly classified according to their structure as saturates, olefins, aromatics, asphaltenes, polar compounds and resins. Two classes of organic chemicals, saturated hydrocarbons (SHC) and polycyclic aromatic hydrocarbons (PAH) were analyzed in this study since they are important indicators of the age and source of hydrocarbons. Saturated hydrocarbons (SHC) consist of normal alkanes and selected isoprenoids, ranging from nC₉ to nC₄₀. Total SHC, representing the sum of the resolved and unresolved compounds, is reported for a wide range of compounds, i.e., nC₉ to nC₄₄. Polycyclic aromatic hydrocarbons included 20 parent (un-alkylated) compounds and 23 alkylated compounds, consisting of two- to six-ring PAH compounds. The full laboratory results of the sediment PAH are shown in **Appendix A**. The full laboratory results of the sediment aliphatic hydrocarbons are presented in **Appendix B**.

4.2 SEDIMENT CHLORINATED HYDROCARBONS

An extensive congener specific list of PCBs and Chlorinated Pesticides from Chlordanes, DDTs, and isomers of Hexachlorohexanes were measured in the samples. Method Detection Limits using high resolution gas chromatography / electron capture detection (GC/ECD) are very low (< 0.2 ng/dry g for sediment). The full laboratory results of the sediment chlorinated hydrocarbons are presented in **Appendix C.**

4.3 SEDIMENT TOTAL ORGANIC CARBON

Total organic carbon measurements provide an indication of the amount of organic matter present in bottom sediments. The full laboratory results of the sediment TOC are shown in **Appendix D**.

4.4 GRAIN SIZE

Sediment particle size is important because it controls sedimentary community dynamics and it correlates well with biologically meaningful variables such as porosity, compaction, water content and retention of organic matter.

Sediment particle size is equally important in controlling the chemical composition due to the increase in adsorption with high surface area, fine-grained particles. Many contaminants are strongly bound to organic particles that are in turn readily adsorbed onto fine-grained sediment.

Sediment particle size is reported in four major classes: gravel, sand, silt and clay. This classification is based on the percent composition for each class. Gravel is >2 to 64 mm diameter, sand from >0.0625 to 2 mm, silt is >0.0039 to 0.0625 m and clay is less than 0.0039 mm diameter. Percent fines are the sum of silt and clay and represent the portion of particles with diameters less than 0.063 mm. The full laboratory results of the grain size analysis are presented in **Appendix E**.

4.5 SEDIMENT TRACE METALS

The complete sample results including all QA/QC results are presented in Appendix F.

Note: The appendices contain the results of the analyses followed by the QA/QC sample results.

- Total PAHs of the four (4) samples are shown on Page 14.
- Total Petroleum Hydrocarbons of the four (4) samples are shown on Page 26.
- Chlorinated Pesticides (as Totals of HCc, Chlordane, DDT and PCG) are shown on Page 31
- Total Carbon (TC), Total Organic Carbon (TOC) and Total Inorganic Carbon (TIC) are shown on Page 49
- Grain Size on Pages 52 to 55
- Trace Metals for individual elements are shown on as Pages 58 and 59

5 APPENDICES

5.1 APPENDIX A – POLYCYCLIC AROMATIC HYDROCARBON - PAH

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Molsture Dilution	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 0:03 B&B SOP1006 15.02 80 20 1X	PCO	LED0038D,D 4, PC05R1, PC06R2, Sediment NA 09/21/16 11/07/16 ENV3615 11/11/16 8:07 B&B SOP1006 15,11 83 17 5X	, PC07	LED0039D.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 9:16 B&B SOP1006 15.05 77 23 2X		LED0046.D BC01, BC02, BC03 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 3:30 B&B SOP1006 15.02 23 77 1X	
Target Compounds	Su, Corrected Conc. (ng/dry g)	٥	Su. Corrected Conc. (ng/dry g)	۵	Su. Corrected Conc. (ng/dry g)	Q	Su. Corrected Conc. (ng/dry g)	Q
cis/trans Decalin	14.5			24.4	13	.4	28	8.8
C1-Decalins	21.0			34.3	27	.7	26	8.5
C2-Decalins	122			105.5	52	.7	54	4.3
C3-Decalins	266			341	14	15	82	2.3
C4-Decalins	267			386	20	00	74	4.5
Naphthalene	4.47			84.9	66	.8	50	0.2
C1-Naphthalenes	9.75			37.5	37	.1	3	7.9
C3-Naphthalenes	34.4			363	11	.9	68	05
C4-Naphthalenes	239			635	25	24	1	05
Benzothiophene	1.40			4.12	3.9	94	2.	19
C1-Benzothiophenes	8.70			14.9	10	.7	7.	45
C2-Benzothiophenes	6.08			15.9	9	.1	7.	43
C3-Benzothiophenes	12.1			38.8	13	.0	8.	57
C4-Benzothiophenes	7.08			31.0	11	.9	8.	75
Biphenyl	6.72			10.4	11	.8	10	0.1
Acenaphthene	2.03			237	37	0	3.	70
Dibenzofuran	17.0			41.3	32	9	26	6.3
Fluorene	13.0			71.3	61	.5	26	6.5
C1-Fluorenes	87.2			278	45	.1	24	4.2
C2-Fluorenes	176			573	10	6	48	8.3
C3-Fluorenes	189			645	16	58	43	3.5
Carbazole	3.07			23.5	12	.5	13	3.4
Anthracene Departhrape	0.546			435	14	50	48	22
C1-Phenanthrenes/Anthracenes	264			1003	30	12	1	35
C2-Phenanthrenes/Anthracenes	434			2184	49	94	1	76
C3-Phenanthrenes/Anthracenes	424			1877	65	59	1	89
C4-Phenanthrenes/Anthracenes	223			798	48	36	1	08
Dibenzothiophene	18,4			72.1	30	.7	17	7.9
C1-Dibenzothiophenes	55.9			222	56	.3	28	8.5
C2-Dibenzothiophenes	88.7			489	14	11	.50	0.2
C4-Dibenzothiophenes	70.3			242	2	12	27	7.5
Fluoranthene	6,94			1838	51	4	2	79
Pyrene	8.51			2198	41	1	2	28
C1-Fluoranthenes/Pyrenes	31.0			2947	33	81	1	66
C2-Fluoranthenes/Pyrenes	72.2			1929	18	33	89	9.6
C3-Fluoranthenes/Pyrenes	79.2			1675	18	35	59	9.0
Vanhthohenzothionhene	59.0			980	10	15	49	9.3
C1-Naphthobenzothionhenes	40.9			1615	12	21	75	8.1
C2-Naphthobenzothiophenes	58.2			1392	16	66	76	5.0
C3-Naphthobenzothiophenes	38.3			735	11	19	53	3.6
C4-Naphthobenzothiophenes	12.1			254	40	.6	26	6.7
Benz(a)anthracene	1.65			1860	24	12	1	35
Chrysene/Triphenylene	63.9			2243	33	35	2	24
C2-Chrysenes	160			2788	20	71		19
C3-Chrysenes	107			1384	17	2	76	5.2
C4-Chrysenes	42.7			468	66	.8	38	8.7
Benzo(b)fluoranthene	10.3			1264	25	54	2	14
Benzo(k,j)fluoranthene	0.90			767	15	50	1	77
Benzo(a)fluoranthene	<0.1	U		242	40	.9	30	0.4
Benzo(e)pyréné	24.4			1/97	16	00	1	0/
Benzo(a)pyrene	2.64			252	18	0	1	53
Indeno(1.2.3-c d)ovrene	0.991			629	59	00		22
Dibenzo(a,h)anthracene	1.16			376	35	.8	37	7.1
Benzo(g,h,i)perylene	10.5			932	10	8	1	28
Total PAHs	4272			49706	930	03	49	19

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 0:03 B&B SOP1006 15.02 80 20 1X	LED0038D.D PC04, PC05R1, PC06R2 Sediment NA 09/21/16 11/07/16 ENV3615 11/11/16 8:07 B&B SOP1006 15.11 83 17 5X	, PC07	LED0039D.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3815 11/11/16 9:16 B&B SOP1006 15.05 77 23 2X		LED0046.D BC01, BC02, BC0 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 3:30 B&B SOP1006 15.02 23 77 1X	3
Target Compounds Individual Alkyl Isomers and Hop	Su. Corrected Q Conc. (ng/dry g) anes	Su. Corrected Conc. (ng/dry g)	Q	Su. Corrected Conc. (ng/dry g)	Q	Su. Corrected Conc. (ng/dry g)	Q
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methyldibenzothiophene 2/3-Methyldibenzothiophene 2/3-Methyldibenzothiophene 3-Methyldibenzothiophene 3-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 3,6-Dimethylphenanthrene 3,6-Dimethylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 3,6-Dimethylphenanthrene 2-Methylphenanthrene 2-Methylphenanthrene 3,6-Dimethylphenanthrene 8eatene 2-Methylphenanthrene 8a-Oleanane C30-Hopane C20-Hopane C20-TAS C24(20S)-TAS C24(20S)-TAS C27(20R)-TAS C27(20R)-TAS C28(20R)-TAS	$\begin{array}{c} 6.83\\ 8.19\\ 5.26\\ 10.7\\ 41.4\\ 43.2\\ 16.8\\ 14.6\\ 60.8\\ 68.5\\ 3.54\\ 137\\ 74.2\\ 19.4\\ 4.10\\ 2.11\\ 2.99\\ 12.5\\ <0.6\\ U\\ 27.8\\ 47.1\\ 26.3\\ 38.3\\ 84.2\\ 145\\ 47.2\\ 113\end{array}$		36.1 20.9 13.47 42.8 151 173 90.1 32.5 357 252 178 288 233 273 48.6 343 672 27.8 <2.9 U 51.4 67 52.4 32.9 74.4 119 39.9 92.1	34 21 16 21 24 36 27 11 83 95 66 33 38 95 52 11 22 35 34 67 40 50 50 11 11 76 12	7 6 8 1 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 1 5 8 5 8 1 5 8 5 8 1 5 8 5 8 5 8 1 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 		4.0 4.3.8 6.2 1.6 7.5 1.1.5 9.0.8 10.4 15.6 10.4 15.6 10.4 15.6 10.4 15.1 10.6 10.4 11.5 10.8 10.4 11.5 12.6 10.4 11.5 12.6 10.8 10.4 11.5 12.6 10.8 10.4 11.5 12.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10
Surrogate Recovery Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	70 88 90 93 84	84 93 93 104 99	D D D D	79 91 95 104 95		66 85 86 92 80	

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Method Blank Report

Target Compounds	Su Corrected	0	3X	Actual MDI
Dilution	1X			
% Moisture	NA			
% Dry	NA			
Sample Dry Weight (g)	15.0			
Method	B&B SOP1006			
Date Acquired	11/10/16 17:09			
Extraction Batch	ENV3615			
Extraction Date	11/07/16			
Received Date	NA			
Collection Date	NA			
Matrix	Sediment			
Sample ID	Method Blank			
Laboratory ID	ENV3013A.D			

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	3X MDL	Actual MDL	
cis/trans Decalin	<0.1	U	0.396	0.132	
C1-Decalins	<0.3	U	0.789	0.263	
C2-Decalins	<0.3	U	0.789	0.263	
C3-Decalins	<0.3	U	0.789	0.263	
C4-Decalins	<0.3	U	0.789	0.263	
Naphthalene	0.122	J	1.03	0.342	
C1-Naphthalenes	<1	U	3.09	1.03	
C2-Naphthalenes	<0.7	U	2.05	0.684	
C3-Naphthalenes	<0.7	0	2.05	0.684	
C4-Naphthalenes	<0.7	U	2.05	0.684	
C1 Reprethienhones	<0.1	0	0.270	0.090	
C2-Benzothionhenes	<0.2	U U	0.540	0.180	
C3-Benzothiophenes	<0.2	ŭ	0.540	0.180	
C4-Benzothiophenes	<0.2	Ŭ	0.540	0.180	
Biphenyl	0.130	J	0.882	0.294	
Acenaphthylene	0.067		0.123	0.041	
Acenaphthene	<0.1	U	0.309	0.103	
Dibenzofuran	<0.2	U	0.612	0.204	
Fluorene	<0.2	U	0.549	0.183	
C1-Fluorenes	<0.4	U	1.10	0.367	
C2-Fluorenes	<0.4	U	1.10	0.367	
C3-Fluorenes	<0.4	0	1.10	0.367	
Carbazole	<0.1	U	0.450	0.150	
Rhenanthrono	<0.1		0.345	0.115	
C1-Dhenanthrenes/Anthracenes	0.133	л П	0.024	0.200	
C2-Phenanthrenes/Anthracenes	<0.1	ŭ	0.855	0.285	
C3-Phenanthrenes/Anthracenes	<0.0	ŭ	0.855	0.285	
C4-Phenanthrenes/Anthracenes	<0.3	Ū	0.855	0.285	
Dibenzothiophene	<0.1	U	0.348	0.116	
C1-Dibenzothiophenes	<0.1	U	0.192	0.064	
C2-Dibenzothiophenes	<0.2	U	0.696	0.232	
C3-Dibenzothiophenes	<0.2	U	0.696	0.232	
C4-Dibenzothiophenes	<0.2	U	0.696	0.232	
Fluoranthene	<0.3	U	0.999	0.333	
Pyrene	<0.1	U	0.408	0.136	
C1-Fluoranthenes/Pyrenes	<0.5	0	1.41	0.469	
C2-Fluoranthenes/Pyrenes	<0.5		1.41	0.469	
C4-Fluoranthenes/Pyrenes	<0.0	ŭ	1.41	0.469	
Naphthobenzothiophene	<0.1	Ŭ	0.384	0.128	
C1-Naphthobenzothiophenes	<0.3	U	0.768	0.256	
C2-Naphthobenzothiophenes	<0.3	U	0.768	0.256	
C3-Naphthobenzothiophenes	<0.3	U	0.768	0.256	
C4-Naphthobenzothiophenes	<0.3	U	0.768	0.256	
Benz(a)anthracene	<0.2	U	0.576	0.192	
Chrysene/Triphenylene	<0.1	U	0.348	0.116	
C1-Chrysenes	<0.2	U	0.696	0.232	
C2-Chrysenes	<0.2	U U	0.696	0.232	
C4-Chrysenes	<0.2	0	0.030	0.232	
Benzo(b)fluoranthene	<0.2	ŭ	0.609	0.202	
Benzo(k,j)fluoranthene	<0.1	Ū	0.294	0.098	
Benzo(a)fluoranthene	<0.1	U	0.294	0.098	
Benzo(e)pyrene	<0.2	U	0.531	0.177	
Benzo(a)pyrene	<0.1	U	0.303	0.101	
Perylene	<1.3	U	3.80	1.27	
Indeno(1,2,3-c,d)pyrene	<0.1	U	0.150	0.050	
Dibenzo(a,h)anthracene	<0.1	U	0.192	0.064	
Benzo(g,h,i)perylene	<0.1	U	0.264	0.088	
Total PAHs	0.458				

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Method Blank Report

Laboratory ID	ENV3615A.D	
Sample ID	Method Blank	
Matrix	Sediment	
Collection Date	NA	
Received Date	NA	
Extraction Date	11/07/16	
Extraction Batch	ENV3615	
Date Acquired	11/10/16 17:09	
Method	B&B SOP1006	
Sample Dry Weight (g)	15.0	
% Dry	NA	
% Moisture	NA	
Dilution	1X	

Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	3X MDI	Actual MDL
Individual Alkyl Isomers and Hop	anes		1000	
2-Methylnaphthalene	<1	.3 U	3.89	1.30
1-Methylnaphthalene	<0	.5 U	1.64	0.546
2,6-Dimethylnaphthalene	<0	.3 U	0.783	0.261
1,6,7-TrimethyInaphthalene	<0	.1 U	0.381	0.127
1-Methylfluorene	<0	.2 U	0.573	0.191
4-Methyldibenzothiophene	<0	.1 U	0.273	0.091
2/3-Methyldibenzothiophene	<0	.1 U	0.273	0.091
1-Methyldibenzothiophene	<0	.1 U	0.273	0.091
3-Methylphenanthrene	<0	.1 U	0.291	0.097
2-Methylphenanthrene	<0	.1 U	0.291	0.097
2-Methylanthracene	<0	.1 U	0.291	0.097
4/9-Methylphenanthrene	<0	.1 U	0.291	0.097
1-Methylphenanthrene	<0	.1 U	0.291	0.097
3,6-Dimethylphenanthrene	<0	.1 U	0.330	0.110
Retene	<0	.2 U	0.693	0.231
2-Methylfluoranthene	<0	.2 U	0.669	0.223
Benzo(b)fluorene	<0	.1 U	0.375	0.125
C29-Hopane	<0	.6 U	1.73	0.58
18a-Oleanane	<0	.6 U	1.73	0.58
C30-Hopane	<0	.6 U	1.73	0.58
C20-TAS	<0	.6 U	1.73	0.58
C21-TAS	<0	.6 U	1.73	0.58
C26(20S)-TAS	<0	.6 U	1.73	0.58
C26(20R)/C27(20S)-TAS	<0	.6 U	1.73	0.58
C28(20S)-TAS	<0	.6 U	1.73	0.58
C27(20R)-TAS	<0	.6 U	1.73	0.58
C28(20R)-TAS	<0	.6 U	1.73	0.58
Surrogate Recovery		T.		
Naphthalene-d8	76			
Acenaphthene-d10	81			
Phenanthrene-d10	87			
Chrysene-d12	88			
Perylene-d12	90			

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Blank Spike Report

Laboratory ID	ENV3615B.D			
Sample ID	Blank Spike			
Matrix Collection Date	Sediment			
Collection Date	NA NA			
Extraction Date	11/07/16			
Extraction Batch	ENV3615			
Date Acquired	11/10/16 18:18			
Method	B&B SOP1006			
Sample Dry Weight (g)	1.00			
% Dry	NA			
% Moisture	NA			
Dilution	1X			
Target Compounds	Su. Corrected Amount (ng)		Q Recovery Q (%)	Spike amount (ng)
cis/trans Decalin		106	106	100
C1-Decalins		NA		
C2-Decalins		NA		
C4-Decalins		NA		
Naphthalene		95.9	96	100
C1-Naphthalenes		NA		
C2-Naphthalenes		NA		
C3-Naphthalenes		NA		
C4-Naphthalenes		NA		100
Benzothiophene		93.7	93	100
C1-Benzothiophenes		NA NA		
C3-Benzothiophenes		NA		
C4-Benzothiophenes		NA		
Biphenyl		133	133	100
Acenaphthylene		95.6	96	100
Acenaphthene		101	100	100
Dibenzofuran		104	104	100
Fluorene		103	103	100
C1-Fluorenes		NA NA		
C3-Fluorenes		NA		
Carbazole		103	103	100
Anthracene		101	101	100
Phenanthrene		105	105	100
C1-Phenanthrenes/Anthracenes		NA		
C2-Phenanthrenes/Anthracenes		NA		
C3-Phenanthrenes/Anthracenes		NA		
Dibenzothiophene		98.1	98	100
C1-Dibenzothiophenes		NA	00	100
C2-Dibenzothiophenes		NA		
C3-Dibenzothiophenes		NA		
C4-Dibenzothiophenes		NA		
Fluoranthene		108	107	100
Pyrene C1 Elueranthones/Durones		105	105	100
C2 Eluoranthenes/Pyrenes		NA NA		
C3-Fluoranthenes/Pyrenes		NA		
C4-Fluoranthenes/Pyrenes		NA		
Naphthobenzothiophene		103	103	100
C1-Naphthobenzothiophenes		NA		
C2-Naphthobenzothiophenes		NA		
C3-Naphthobenzothiophenes		NA		
C4-Naphthobenzothiophenes		105	104	100
Chrysene/Triphenylene		103	104	100
C1-Chrysenes		NA	104	100
C2-Chrysenes		NA		
C3-Chrysenes		NA		
C4-Chrysenes		NA		
Benzo(b)fluoranthene		108	108	100
Benzo(a)fluoranthene		105	105	100
Benzo(e)nvrene		106	106	100
Benzo(a)pyrene		106	105	100
Perylene		100	100	100
Indeno(1,2,3-c,d)pyrene		100	100	100
Dibenzo(a,h)anthracene		104	104	100
Benzo(g,h,i)perylene		90.9	91	100
Average % Recovery			103	

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Blank Spike Report

Laboratory ID	ENV3615B.D
Sample ID	Blank Spike
Matrix	Sediment
Collection Date	NA
Received Date	NA
Extraction Date	11/07/16
Extraction Batch	ENV3615
Date Acquired	11/10/16 18:18
Method	B&B SOP1006
Sample Dry Weight (g)	1.00
% Dry	NA
% Moisture	NA
Dilution	1X

Target Compounds	Su. Corrected Amount (ng)		Q Recovery (%)	Q	Spike amount (ng)
Individual Alkyl Isomers and Hopanes					
2-Methylnaphthalene		99.0	99		100
1-Methylnaphthalene		97.0	97		100
2,6-Dimethylnaphthalene		97.4	97		100
1,6,7-Trimethylnaphthalene		101	101		100
1-Methylfluorene		102	102		100
4-Methyldibenzothiophene		103	102		101
2/3-Methyldibenzothiophene		NA			
1-Methyldibenzothiophene		NA			
3-Methylphenanthrene		NA			
2-Methylphenanthrene		NA			
2-Methylanthracene		NA			
4/9-Methylphenanthrene		NA			
1-Methylphenanthrene		106	106		100
3,6-Dimethylphenanthrene		104	104		100
Retene		101	100		100
2-Methylfluoranthene		102	102		100
Benzo(b)fluorene		108	107		100
C29-Hopane		NA			
18a-Oleanane		NA			
C30-Hopane		104	104		100
C20-TAS		NA			
C21-TAS		NA			
C26(20S)-TAS		NA			
C26(20R)/C27(20S)-TAS		NA			
C28(20S)-TAS		NA			
C27(20R)-TAS		NA			
C28(20R)-TAS		NA			

Surrogate Recovery

Naphthalene-d8	81
Acenaphthene-d10	87
Phenanthrene-d10	91
Chrysene-d12	91
Perylene-d12	90

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Laboratory Duplicate Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	LED0039D.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 9:16 B&B SOP1006 15.05 77 23 23	ENV3615E.D Dupl. (PC09, PC10) Sediment NA 10/12/16 11/07/16 ENV3615 11//11/16 10:25 B&B SOP1006 15.07 77 23 23 2X			
Target Compounds	Su. Corrected Q Conc. (ng/dry g)	Su. Corrected Conc. (ng/dry g)	Q RPD %	Q Q1 3X MDL	MDL
cis/trans Decalin C1-Decalins C2-Decalins C3-Decalins C4-Decalins C4-Decalins C4-Decalins Naphthalenes C4-Naphthalenes C2-Naphthalenes C2-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C3-Naphthalenes C4-Naphthalenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes C4-Dhenzothiophenes C3-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C4-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C4-Fluoranthen	$\begin{array}{c} 13.4\\ 27.7\\ 52.7\\ 145\\ 200\\ 66.8\\ 37.1\\ 77.9\\ 182\\ 224\\ 3.94\\ 10.7\\ 9.10\\ 13.0\\ 11.9\\ 11.8\\ 55.8\\ 37.9\\ 32.9\\ 61.5\\ 45.1\\ 106.4\\ 168\\ 12.5\\ 140\\ 359\\ 302\\ 494\\ 659\\ 302\\ 494\\ 659\\ 302\\ 494\\ 659\\ 302\\ 494\\ 659\\ 302\\ 494\\ 659\\ 302\\ 494\\ 111\\ 331\\ 141\\ 216\\ 112\\ 514\\ 411\\ 331\\ 183\\ 185\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105\\ 10$	13.0 27.9 52.5 147 199 67.1 37.2 78.6 186 230 3.96 10.2 9.50 12.8 12.4 11.8 56.0 38.3 33.2 62.3 46.2 108 179 12.5 140 560 362.3 46.2 108 179 12.5 140 358 304 500 680 0680 680 304 500 800 800 800 800 800 800 800 800 800	2 0 0 2 0 0 1 1 2 3 0 5 4 2 4 0 0 1 1 2 3 0 5 4 2 4 0 0 1 1 2 3 0 5 4 2 4 0 0 1 1 2 3 0 5 4 2 4 0 0 1 1 1 2 3 0 5 4 2 1 0 0 1 1 1 2 1 0 0 0 1 1 1 2 0 0 1 1 1 1	0.786 1.58 1.58 1.58 1.58 2.05 6.16 4.09 4.09 4.09 0.540 1.08 1.09 1.39 1.53 1.	0.262 0.525 0.525 0.525 0.682 2.05 1.36 1.36 0.180 0.359 0.455 0.407 0.365 0.731 0.731 0.731 0.731 0.731 0.298 0.230 0.414 0.568 0.568 0.231 0.127 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.455 0.271 0.934 0.934 0.934 0.934 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.555
C4-Naphthobenzothiophenes Benz(a)anthracene Chrysene/Triphenylene C1-Chrysenes C2-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(k)i)fluoranthene	40.6 242 333 237 271 172 66.8 254 150	42.0 251 327 264 174 63.4 250 152	3 4 2 2 1 5 1 2	1.53 1.15 0.693 1.39 1.39 1.39 1.39 1.39 1.21 0.585	0.510 0.383 0.231 0.462 0.462 0.462 0.462 0.462 0.404 0.195
Benzo(a)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Total PAHs	40.9 40.9 165 187 59.0 100 35.8 108 9303	42.1 166 195 59.6 101 36.4 108 9375	2 3 1 4 1 0 2 1 1	0.585 1.06 0.606 7.58 0.300 0.384 0.525	0.195 0.352 0.202 2.53 0.100 0.128 0.175

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Laboratory Duplicate Report

Laboratory ID	LED0039D.D	ENV3615E.D
Sample ID	PC09, PC10	Dupl. (PC09, PC10)
Matrix	Sediment	Sediment
Collection Date	NA	NA
Received Date	10/12/16	10/12/16
Extraction Date	11/07/16	11/07/16
Extraction Batch	ENV3615	ENV3615
Date Acquired	11/11/16 9:16	11/11/16 10:25
Method	B&B SOP1006	B&B SOP1006
Sample Dry Weight (g)	15.05	15.07
% Dry	77	77
% Moisture	23	23
Dilution	2X	2X

Target Compounds	Su. Corrected	Q	Su. Corrected	Q	RPD %	Q Q1	3X MDI	MDL
Individual Alkyl Isomers and Hopanes	conc. (ng/ary g/		conc. (ng/dry g/					
2-Methylnaphthalene	34 7	7	34	9	1		7 75	2 58
1-Methylnaphthalene	21 (6	21	7	0		3.27	1.09
2 6-Dimethylnaphthalene	16.6	B	16	6	1		1.56	0.519
1.6.7-Trimethylnaphthalene	21	1	21	4	1		0 762	0 254
1-Methylfluorene	24 5	5	25	0	2		1 14	0.381
4-Methyldibenzothiophene	36.8	В	36	.7	0		0.546	0.182
2/3-Methyldibenzothiophene	27.	1	27	.2	0		0.546	0.182
1-Methyldibenzothiophene	11.3	3	11	.2	0		0.546	0.182
3-Methylphenanthrene	83.5	5	83	.4	0		0.582	0.194
2-Methylphenanthrene	109	9	10)8	1		0.582	0.194
2-Methylanthracene	38.8	В	38	.5	1		0.582	0.194
4/9-Methylphenanthrene	95.6	5	95	.7	0		0.582	0.194
1-Methylphenanthrene	66.0	6	70	.2	5		0.582	0.194
3,6-Dimethylphenanthrene	33.4	4	32	.2	4		0.657	0.219
Retene	29.1	1	27	.9	4		1.38	0.461
2-Methylfluoranthene	52.4	4	51	.1	2		1.33	0.444
Benzo(b)fluorene	11;	3	11	4	0		0.747	0.249
C29-Hopane	22	5	23	34	4		3.44	1.15
18a-Oleanane	35.4	4	33	.7	5		3.44	1.15
C30-Hopane	340	6	34	19	1		3.44	1.15
C20-TAS	67.0	D	72	.6	8		3.44	1.15
C21-TAS	40.2	2	41	.5	3		3.44	1.15
C26(20S)-TAS	50.4	4	49	.8	1		3.44	1.15
C26(20R)/C27(20S)-TAS	137	7	13	36	0		3.44	1.15
C28(20S)-TAS	164	4	16	66	1		3.44	1.15
C27(20R)-TAS	76.4	4	76	.2	0		3.44	1.15
C28(20R)-TAS	120	6	12	27	1		3.44	1.15
Surrogate Recovery								
Naphthalene-d8	79	D	78	D				
Acenaphthene-d10	91	D	91	D				
Phenanthrene-d10	95	D	94	D				
Chrysene-d12	104	D	103	D				
Pervlene-d12	95	D	96	D				

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Matrix Spike Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 0:03 B&B SOP1006 15.02 80 20 1X	ENV3615D.D MS (PC01R, PC02, PC Sediment NA 10/12/16 11/07/16 ENV3615 11/10/16 20:36 B&B SOP1006 15.00 80 20 1X	03)			
Target Compounds	Su. Corrected (Conc. (ng/dry g)	Q Su. Corrected Conc. (ng/dry g)		Q Recovery Q (%)	Q1	Spike Amount (ng)
cis/trans Decalin	14.5		19.5	74	Y	100
C2-Decalins	21.0		NA NA			
C3-Decalins	266		NA			
C4-Decalins	267		NA			
Naphthalene	4.47		10.5	90		100
C1-Naphthalenes	9.75		NA			
C2-Naphthalenes	34.4		NA			
C4-Naphthalenes	239		NA			
Benzothiophene	1.40		7.17	86		100
C1-Benzothiophenes	8.70		NA			
C2-Benzothiophenes	6.08		NA			
C3-Benzothiophenes	12.1		NA			
Biphenyl	6.72		11.4	70		100
Acenaphthylene	1.22		7.76	98		100
Acenaphthene	2.03		8.51	97		100
Dibenzofuran	17.0		24.1	105	Y	100
C1-Eluorenes	87.2		20.5 NA	100		100
C2-Fluorenes	176		NA			
C3-Fluorenes	189		NA			
Carbazole	3.07		9.84	101		100
Anthracene	0.546		6.56	90	v	100
C1-Phenanthrenes/Anthracenes	264		NA	00	1	100
C2-Phenanthrenes/Anthracenes	434		NA			
C3-Phenanthrenes/Anthracenes	424		NA			
C4-Phenanthrenes/Anthracenes	223		NA	440	v	100
C1-Dibenzothiophenes	18.4		26.4 NA	118	Ŷ	100
C2-Dibenzothiophenes	88.7		NA			
C3-Dibenzothiophenes	76.3		NA			
C4-Dibenzothiophenes	22.9		NA			
Fluoranthene	6.94		14.0	106		100
C1-Fluoranthenes/Pyrenes	31.0		NA	105		100
C2-Fluoranthenes/Pyrenes	72.2		NA			
C3-Fluoranthenes/Pyrenes	79.2		NA			
C4-Fluoranthenes/Pyrenes	59.0		NA			
C1-Naphthobenzothionhenes	34.8		NA NA			
C2-Naphthobenzothiophenes	58.2		NA			
C3-Naphthobenzothiophenes	38.3		NA			
C4-Naphthobenzothiophenes	12.1		NA			100
Chrysene/Trinbenylene	63.9		73.9	148	Y	100
C1-Chrysenes	94.9		NA		1	
C2-Chrysenes	160		NA			
C3-Chrysenes	107		NA			
04-00000000000000000000000000000000000	42.7		NA 1/1.9	67		100
Benzo(k,j)fluoranthene	0.899		8.66	116		100
Benzo(a)fluoranthene	<0.1	U	NA			
Benzo(e)pyrene	24.4		34.0	143	Υ	100
Benzo(a)pyrene	2.64		10.2	114		100
Perylene	11.1		18.5	110		100
Dibenzo(a,h)anthracene	1 16		8.95	117		100
Benzo(g,h,i)perylene	10.5		17.2	101		100
Average % Recovery				102		

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Matrix Spike Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 11/11/16 0:03 B&B SOP1006 15.02 80 20 1X		ENV3615D.D MS (PC01R, PC02, PC Sediment NA 10/12/16 11/07/16 ENV3615 11/10/16 20:36 B&B SOP1006 15.00 80 20 1X	203)			
Target Compounds	Su. Corrected Conc. (ng/dry g)	Q	Su. Corrected Conc. (ng/dry g)		Q Recovery	Q Q1	Spike Amount (na)
Individual Alkyl Isomers and Hopa	anes		conc. (ng/ary g/		(70)		(19)
2-Methylnaphthalene	6.8	3		14 3	111		100
1-Methylnaphthalene	8.1	9		14.6	96		100
2.6-Dimethylnaphthalene	5.2	6		11.3	90		100
1.6.7-Trimethylnaphthalene	10.	7		14.9	64		100
1-Methylfluorene	41	4		48.6	105	Y	100
4-Methyldibenzothiophene	43.	2		49.0	85	Y	101
2/3-Methyldibenzothiophene	16.	8		NA			
1-Methyldibenzothiophene	14.	6		NA			
3-Methylphenanthrene	60.	8		NA			
2-Methylphenanthrene	68.	5		NA			
2-Methylanthracene	3.5	4		NA			
4/9-Methylphenanthrene	13	7		NA			
1-Methylphenanthrene	74.	2		80.4	90	Y	100
3.6-Dimethylphenanthrene	19.	4		29.3	147	Y	100
Retene	4.1	0		9.1	74		100
2-Methylfluoranthene	2.1	1		9.6	112		100
Benzo(b)fluorene	2.9	9		10.1	106		100
C29-Hopane	12.	5		NA			
18a-Oleanane	<0.	6 U		NA			
C30-Hopane	27.	8		NA			
C20-TAS	47.	1		NA			
C21-TAS	26.	3		NA			
C26(20S)-TAS	38.	3		NA			
C26(20R)/C27(20S)-TAS	84.	2		NA			
C28(20S)-TAS	14	5		NA			
C27(20R)-TAS	47.	2		NA			
C28(20R)-TAS	11	3		NA			
Surrogate Recovery							
Naphthalene-d8	70		71				
Acenaphthene-d10	88		89				
Phenanthrene-d10	90		86				
Chrysene-d12	93		89				
Perylene-d12	84		87				
LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Standard Reference Material Report

Laboratory ID	ENV3615C.D				
Sample ID	SRM1941b				
Matrix	Sediment				
Collection Date	NA				
Extraction Date	11/07/16				
Extraction Batch	ENV3615				
Date Acquired	11/10/16 19:27				
Method	B&B SOP1006				
Sample Dry Weight (g)	4.05				
% Dry	98				
Dilution	2 1X				
Target Compounds	Su. Corrected Conc. (ng/dry g)	Q RPD (%)	SRM 1941b Certified Conc. (ng/dry g)	-30% Certified Conc. (ng/dry g)	+30% Certified Conc. (ng/dry g)
cis/trans Decalin	31.9		(((
C1-Decalins	15.5				
C2-Decalins	12.5				
C3-Decalins	24.4				
C4-Decalins	49.7	27	949 + 05	527	1006
C1-Naphthalenes	203	21	040133	521	1220
C2-Naphthalenes	197				
C3-Naphthalenes	164				
C4-Naphthalenes	83.3				
Benzothiophene	27.5				
C1-Benzothiophenes	31.2				
C2-Benzothiophenes	20.6				
C3-Benzothiophenes	10.0				
Binhenvl	5.70				
Acenaphthylene	76.3				
Acenaphthene	24.0				
Dibenzofuran	81.9				
Fluorene	49.8	52	85 ± 15	49.0	130
C1-Fluorenes	50.2				
C2-Fluorenes	75.1				
C3-Fluorenes	81.1				
Anthracene	19.3	0	184 + 18	116	263
Phenanthrene	396	3	406 ± 44	253	585
C1-Phenanthrenes/Anthracenes	295				
C2-Phenanthrenes/Anthracenes	300				
C3-Phenanthrenes/Anthracenes	194				
C4-Phenanthrenes/Anthracenes	130				
Dibenzothiophene	50.9				
C1-Dibenzothiophenes	64.2				
C2-Dibenzothiophenes	100				
C4-Dibenzothiophenes	34.5				
Fluoranthene	629	3	651 ± 50	421	911
Pyrene	474	20	581 ± 39	379	806
C1-Fluoranthenes/Pyrenes	305				
C2-Fluoranthenes/Pyrenes	242				
C3-Fluoranthenes/Pyrenes	125				
C4-Fluoranthenes/Pyrenes	68				
C1 Naphthobenzothiophenes	102				
C2-Naphthobenzothiophenes	120				
C3-Naphthobenzothiophenes	88.0				
C4-Naphthobenzothiophenes	29.6				
Benz(a)anthracene	289	15	335 ± 25	217	468
Chrysene/Triphenylene	389	2	399 ± 36	254	566
C1-Chrysenes	231				
C2-Chrysenes	149				
C4-Chrysenes	80.9				
Benzo(b)fluoranthene	J2.2 421	7	453 + 21	302	616
Benzo(k,j)fluoranthene	439	. 1	442 ± 23	293	605
Benzo(a)fluoranthene	67.5				
Benzo(e)pyrene	328	1	325 ± 25	210	455
Benzo(a)pyrene	251	35	358 ± 17	239	488
Perylene	322	21	397 ± 45	246	575
Indeno(1,2,3-c,d)pyrene	248	32	341 ± 57	199	517
Benzo(a, hi)perviene	79.8	40	307 ± 45	30.1	01.9 458
Served Brithher Andre	240	20	501 I 40	100	400
Total PAHs	9841				

LEED Co - Lake Erie Polycyclic Aromatic Hydrocarbon Data Standard Reference Material Report

Laboratory ID	ENV3615C.D
Sample ID	SRM1941b
Matrix	Sediment
Collection Date	NA
Received Date	NA
Extraction Date	11/07/16
Extraction Batch	ENV3615
Date Acquired	11/10/16 19:27
Method	B&B SOP1006
Sample Dry Weight (g)	4.05
% Dry	98
% Moisture	2
Dilution	1X

Target Compounds	Su. Corrected	Q	RPD	SRM 1941b	-30% Certified Conc	+30% Certified Conc
Individual Alkyl Isomers and Hopanes	Conc. (ng/dry g)		(70)	(ng/dry g)	(ng/dry g)	(ng/dry g)
2-Methylnaphthalene	206					
1-Methylnaphthalene	102					
2,6-Dimethylnaphthalene	39.1					
1,6,7-TrimethyInaphthalene	21.0					
1-Methylfluorene	26.9					
4-Methyldibenzothiophene	43.7					
2/3-Methyldibenzothiophene	29.2					
1-Methyldibenzothiophene	12.7					
3-Methylphenanthrene	88.8		17	105 ± 13	64.4	153
2-Methylphenanthrene	105					
2-Methylanthracene	62.6					
4/9-Methylphenanthrene	67.4					
1-Methylphenanthrene	60.9		18	73.2 ± 5.9	47.1	103
3,6-Dimethylphenanthrene	26.5					
Retene	29.3					
2-Methylfluoranthene	73.0					
Benzo(b)fluorene	70.8					
C29-Hopane	195					
18a-Oleanane	34.9					
C30-Hopane	283					
C20-TAS	44.7					
C21-TAS	6.25					
C26(20S)-TAS	9.00					
C26(20R)/C27(20S)-TAS	44.7					
C28(20S)-TAS	26.9					
C27(20R)-TAS	25.5					
C28(20R)-TAS	23.8					

Surrogate Recovery

Naphthalene-d8	63
Acenaphthene-d10	76
Phenanthrene-d10	80
Chrysene-d12	80
Perylene-d12	73

5.2 Appendix B - Aliphatic Hydrocarbons

B&B Laboratories Project J16222 Report 16-3589 LEED Co. - Lake Erie Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g)	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 05:54 B&B SOP1016 15:02 18:69	LED0038.D PC04, PC05R1, PC06R2, Sediment NA 09/21/16 11/07/16 ENV3615 16-Nov-2016, 07:04 B&B SOP1016 15.11 18.18	PC07	LED0039.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 08:15 B&B SOP1016 15.05 19.61		LED0046.D BC01, BC02, BC03 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 09:26 B&B SOP1016 15.02 65.26	\$
% Dry % Moisture	80	83		23		23 77	
Dilution	1X	1X		1X		1X	
Target Compounds	Su. Corrected Q Conc. (µg/dry g)	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q
n-C9	0.120		0.113	0.0)89)65	0	.095
n-C10	0.048		0.077	0.0	165	0	1.071
n-011	0.035		0.172	0.1	105	0	175
n-C13	0.961		0.682	0.1	449	0	325
i-C15	0.395		0.709	0.3	346	ő	204
n-C14	1.305		1.259	0.6	24	ō	.393
i-C16	0.815		1.333	0.7	58	0	.302
n-C15	1.297		1.813	1.1	05	0	.542
n-C16	1.302		1.550	1.0	183	0	.422
i-C18	0.624		1.226	0.7	′51	0	.222
n-C17	1.214		1.722	1.1	37	1	.467
Pristane	1.127		1.701	1.3	84	0	.339
n-C18	1.222		1.286	1.0	/41	0	0.990
Phytane	0.634		1.465	0.9	193	0	.299
n-C19	1.244		1.5/0	1.1	125	0	249
n-C21	0.575		1.445	0.8	12:0	1	672
n-C22	0.820		1.240	0.0	73	0	392
n-C23	0.707		1.405	0.6	575	0	698
n-C24	0.567		0.636	0.5	518	ő	350
n-C25	0.513		0.922	0.5	68	õ	.849
n-C26	0.432		0.658	0.3	385	Ō	.352
n-C27	0.415		0.900	0.3	395	1	.264
n-C28	0.376		0.317	0.6	512	0	.641
n-C29	0.379		0.812	0.4	20	1	.880
n-C30	0.229		0.313	0.1	92	0	.398
n-C31	0.253		0.407	0.4	65	2	.344
n-C32	0.143		0.155	0.2	247	0	.395
n-C33	0.154		0.410	0.2	216	1	.721
n-034	0.094		0.117	0.1	00	0	.282
n-035	0.092		0.109	0.1	164	1	.503
n-C37	0.040		0.105	<0.0	100	0	214
n-C38	0.033		0.055	<0.0	11911	0	130
n-C39	<0.033		0.002	<0.0	119 []	0	092
n-C40	0.083		0.047	<0.0)19 U	0	.124
Total Alkanes	20.0		28.5	18	8.9		22.4
Total Petroleum Hydrocarbons	201		822	7	70		606
Unresolved Complex Mixture	45 156		141 682	7	59 /11		446
	407		1150	10			1520
Surrogate (Su)	421	Su Pocovory /%)	1159	Su Recovery /%	50	Su Recovery (%)	1000
	00	04		00 Nectivery (78)		04	
n-uodecane-d20	00	81 QA		00 87		01	
n-triacontane-d62	94	113		104		106	
		115		.04			

LEED Co. - Lake Erie Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Method Blank Report

Laboratory ID Sample ID	ENV3615A.D Method Blank				
Matrix	Sediment				
Collection Date	NA				
Received Date	NA				
Extraction Date	11/07/16 ENV/2615				
Date Acquired	15-Nov-2016 22:49				
Method	B&B SOP1016				
Sample Dry Weight (g)	15.00				
Sample Wet Weight (g)	NA				
% Dry % Moisture	NA NA				
Dilution	1X				
Target Compounds	Su. Corrected Conc. (µg/dry g)	Q	Q	3X MDL Conc. (µg/dry g)	Actual MDL Conc. (µg/dry g)
n-C9	<0.012	2 U		0.037	0.012
n-C10	< 0.02	1 U		0.064	0.021
n-C11	<0.010	5 U		0.049	0.016
n-C13	<0.01	9 U 5 H		0.006	0.019
i-C15	<0.04	5 U		0.049	0.045
n-C14	< 0.01	3 Ū		0.039	0.013
i-C16	< 0.004	4 U		0.013	0.004
n-C15	<0.01	5 U		0.049	0.016
n-C16	<0.004	40		0.013	0.004
n-C17	<0.00	4 U 3 II		0.011	0.004
Pristane	<0.00	3 0		0.008	0.003
n-C18	< 0.004	4 U		0.011	0.004
Phytane	< 0.00	5 U		0.018	0.006
n-C19	< 0.00	5 U		0.015	0.005
n-C20	<0.01	20		0.037	0.012
n-C22	<0.00	+ U 3 U		0.012	0.004
n-C23	<0.008	ΒŪ		0.024	0.008
n-C24	< 0.00	5 U		0.016	0.005
n-C25	< 0.00	7 U		0.021	0.007
n-C26	<0.00	BU		0.023	0.008
n-C27	<0.01	10		0.032	0.011
n-C29	<0.01	1 1		0.055	0.011
n-C30	<0.01	šυ		0.038	0.013
n-C31	< 0.01	5 U		0.044	0.015
n-C32	< 0.01	2 U		0.035	0.012
n-C33	< 0.02	10		0.064	0.021
n-C35	<0.010	50		0.049	0.015
n-C36	<0.01	5 U		0.044	0.015
n-C37	< 0.01	7 U		0.052	0.017
n-C38	< 0.01	ЭU		0.057	0.019
n-C39 n-C40	<0.019 <0.019	9 U 9 U		0.056	0.019 0.019
Total Alkanes			U		
Total Petroleum Hydrocarbons	<1.4	4 U		4.20	1.40
Total Resolved Hydrocarbons	<1.4	4 U		4.20	1.40
Unresolved Complex Mixture	<1.4	4 U		4.20	1.40
EOM (µg/dry g)	<100	D		300	100
Surrogate (Su)	Su Recovery (%)				
n-dodecane-d26	81				
n-eicosane-d42	95				
n-triacontane-d62	93				

LEED Co. - Lake Erie Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Blank Spike Report

Laboratory ID	ENV3615B
Sample ID	Blank Spike
Matrix	Sediment
Collection Date	NA
Received Date	NA
Extraction Date	11/07/16
Extraction Batch	ENV3615
Date Acquired	16-Nov-2016, 00:00
Method	B&B SOP1016
Sample Dry Weight (g)	1.00
Sample Wet Weight (g)	NA
% Dry	NA
% Moisture	NA
Dilution	1X

Target Compounds	Su. Corrected Conc. (µg/dry g)	Recovery (%)	Q	Spike Amount (µg)
n-C9	9.86	98		10.0
n-C10	9.68	97		10.0
n-C11	10.0	100		10.0
n-C12	10.2	101		10.0
n-C13	9.73	96		10.1
n-C14	9.93	99		10.0
n-C15	10.0	100		10.0
n-C16	10.1	101		10.0
n-C17	10.1	101		10.0
Pristane	10.2	103		9.92
n-C18	10.2	102		10.1
Phytane	9.51	95		10.0
n-Ć19	10.2	103		10.0
n-C20	10.2	103		10.0
n-C21	10.2	102		10.1
n-C22	10.2	103		9.95
n-C23	10.3	104		9.89
n-C24	10.0	101		9.93
n-C25	10.2	102		10.0
n-C26	10.0	99		10.1
n-C27	10.2	102		10.0
n-C28	10.1	100		10.1
n-C29	10.0	101		9.93
n-C30	10.0	100		10.0
n-C31	10.0	99		10.1
n-C32	9.85	100		9.87
n-C33	10.1	101		10.0
n-C34	9.94	99		10.0
n-C35	9.84	99		10.0
n-C36	9.77	97		10.0
n-C37	9.94	99		10.1
n-C38	9.60	96		10.0
n-C39	9.44	94		10.0
n-C40	9.61	96		10.0
Average %Recovery		100		
Surrogate (Su)	Su Recovery (%)			
n-dodecane-d26	91			
n-eicosane-d42	96			
n-triacontane-d62	94			

LEED Co. - Lake Erie Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Laboratory Duplicate Report

Laboratory ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0039.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 08:15 B&B SOP1016 15.05 19.61 77 23 1X	1	ENV3615E.D PC09, PC10 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 04:43 B&B SOP1016 15.07 19.63 77 23 1X					
Target Compounds	Su. Corrected Conc. (µg/dry g)	Q	Su. Corrected Conc. (µg/dry g)	Q	RPD (%)	QQ	MDL (µg/dry g)	3X MDL (µg/dry g)
n-C9 n-C10 n-C11 n-C12 n-C13 i-C15 n-C14 i-C16 i-C16 i-C18 n-C16 i-C18 n-C17 Pristane n-C17 Pristane n-C18 Phytane n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C26 n-C27 n-C28 n-C28 n-C28 n-C28 n-C28 n-C29 n-C30 n-C31 n-C32 n-C33 n-C34 n-C35 n-C36 n-C37 n-C36 n-C37 n-C38 n-C36 n-C37 n-C38 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C30 n-C31 n-C36 n-C37 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C30 n-C31 n-C38 n-C39 n-C40 Total Alkanes	0.089 0.065 0.109 0.141 0.349 0.346 0.624 0.758 1.105 1.083 0.751 1.137 1.384 1.041 0.993 1.137 1.025 0.881 0.773 0.675 0.518 0.588 0.385 0.385 0.395 0.612 0.420 0.192 0.465 0.247 0.216 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.187 0.247 0.216 0.186 0.186 0.186 0.186 0.186 0.186 0.187 0.197 0.217 0.216 0.187 0.197 0.197 0.019 0.019 0.019 0.019			0.096 0.055 0.114 0.152 0.371 0.347 0.626 0.772 1.028 1.029 0.759 1.199 1.444 1.045 0.949 1.090 1.065 0.876 0.545 0.527 0.421 0.388 0.545 0.545 0.527 0.421 0.388 0.645 0.416 0.207 0.461 0.239 0.225 0.184 0.171 0.019 U 0.017 U 0.019 U 0.019 U 1.8.9 772 59 713	8 17 4 8 6 0 0 2 7 5 1 5 4 0 5 4 4 1 3 0 5 7 9 2 5 1 8 1 3 4 1 7 0 0 0 0 2 7 5 1 5 4 0 5 4 4 1 3 0 5 7 9 2 5 1 8 1 8 1 3 4 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.012 0.021 0.016 0.019 0.045 0.016 0.013 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.005 0.012 0.004 0.005 0.012 0.008 0.005 0.007 0.008 0.005 0.007 0.008 0.005 0.007 0.008 0.001 0.011 0.011 0.011 0.011 0.011 0.012 0.021 0.016 0.016 0.016 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.012 0.001 0.011 0.016 0.016 0.005 0.012 0.012 0.021 0.016 0.017 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.016 0.004 0.004 0.004 0.004 0.004 0.005 0.012 0.005 0.012 0.011 0.011 0.001 0.004 0.004 0.004 0.005 0.012 0.004 0.004 0.005 0.012 0.004 0.005 0.012 0.005 0.012 0.005 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0110 0.011 0.01100000000	0.037 0.064 0.049 0.056 0.134 0.049 0.039 0.013 0.049 0.013 0.011 0.010 0.008 0.011 0.010 0.024 0.015 0.037 0.012 0.010 0.024 0.016 0.021 0.023 0.033 0.064 0.038 0.044 0.035 0.064 0.049 0.047 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.056 0.056 0.056 0.057 0.056 0.056 0.057 0.056 0.056 0.057 0.056 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.056 0.
EOM (µg/dry g)	1050)		1105	5			
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)					
n-dodecane-d26 n-eicosane-d42 n-triacontane-d62	86 87 104		86 92 108					

LEED Co. - Lake Erie Aliphatic Hydrocarbon and Total Petroleum Hydrocarbon Data Matrix Spike Report

Laboratory ID Sample ID Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 05:54 B&B SOP1016 15.02 18.69 80 20 1X	ENV3615D.D PC01R, PC02, PC03 Sediment NA 10/12/16 11/07/16 ENV3615 16-Nov-2016, 02:21 B&B SOP1016 15.00 18.66 80 20 1X		
Target Compounds	Su. Corrected Q Conc. (µg/dry g)	Su. Corrected Q Conc. (µg/dry g)	Recovery Q (%)	Q Spike Amount (µg)
n-C9	0.120	0.695	86	10.0
n-C10	0.048	0.656	91	10.0
n-C11	0.040	0.000	100	10.0
n C12	0.000	1.052	100	10.0
n C13	0.021	1.002	105	10.0
1-015	0.301	1.072	100	10.1
P-C10	0.390	2 092	110	10.0
1-014	1.303	2.002	110	10.0
1-016	0.815	NA	105	40.0
n-C15	1.297	2.002	105	10.0
n-C16	1.302	1.962	99	10.0
I-C18	0.624	NA		
n-C17	1.214	1.980	114	10.0
Pristane	1.127	1.859	110	9.92
n-C18	1.222	1.994	115	10.1
Phytane	0.634	1.365	109	10.0
n-C19	1.244	1.924	102	10.0
n-C20	0.979	1.718	111	10.0
n-C21	0.894	1.629	110	10.1
n-C22	0.820	1.543	109	9.95
n-C23	0 707	1 446	112	9.89
n-C24	0.567	1 293	110	9.93
n-C25	0.513	1 230	108	10.0
n-C26	0.010	1.200	105	10.0
n C20	0.402	1 153	110	10.1
n C28	0.413	1.135	110	10.0
n C29	0.370	1.007	109	0.02
n C30	0.375	0.937	106	10.0
n C21	0.223	0.037	100	10.0
n-030	0.203	0.979	100	10.1
- 000	0.143	0.829	104	9.07
n-033	0.154	0.872	108	10.0
n-C34	0.094	0.807	107	10.0
n-C35	0.092	0.806	107	10.0
n-C36	0.040	0.739	104	10.0
n-C37	0.033	0.736	105	10.1
n-C38	0.033	0.711	102	10.0
n-C39	<0.019 U	0.714	107	10.0
n-C40	0.083	0.767	103	10.0
Average %Recovery			106	
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)		
n-dodecane-d26	80	84		
n-eicosane-d42	99	86		
n-triacontane-d62	94	87		
	54	0,		

5.3 APPENDIX C - CHLORINATED HYDROCARBONS

B&B Laboratories Project J16222 Report 16-3589

LEED Co - Lake Erie Organochlorine Data Client Submitted Samples

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 18.67 80 20 1X		LED0038 PC04, PC05R1, PC06R2, PC07 Sediment NA 09/21/16 11/09/16 ENV3617 16-Nov-2016, 04:34 ECD1DUAL.M 15.06 18.12 83 17 1X		LED0039 PC09, PC10 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 06:27 ECD1DUAL.M 15.00 19.54 77 23 1X		LED0046 BC01, BC02, BC03 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 08:20 ECD1DUAL.M 15.03 65.30 23 77 1X	
Target Compounds	Su Corrected Conc. (ng/dry g)	Q	Su Corrected Conc. (ng/dry g)	Q	Su Corrected Conc. (ng/dry g)	Q	Su Corrected Conc. (ng/dry g)	Q
Aldrin	<0.06	U	<0.06	U	<0.06	U	<0.06	U
Dieldrin	< 0.05	Ū	<0.05	Ū	<0.05	Ū	0.18	•
Endrin	<0.06	Ū	<0.06	Ū	<0.06	Ū	<0.06	U
Heptachlor	0.02	J	<0.04	U	<0.04	U	0.27	
Heptachlor-Epoxide	< 0.06	U	<0.06	U	<0.06	U	0.11	
Oxychlordane	0.06	J	<0.06	U	<0.06	U	0.06	J
Alpha-Chlordane	0.02	J	0.32		<0.05	U	0.38	
Gamma-Chlordane	< 0.06	U	<0.05	U	<0.06	U	0.13	
Trans-Nonachlor	< 0.05	Ū	0.04	J	<0.05	Ū	0.10	
Cis-Nonachlor	0.01	J	0.07		0.68		0.21	
Alpha-HCH	<0.08	U	<0.08	U	<0.08	U	<0.08	U
Beta-HCH	0.04	J	<0.05	U	<0.05	U	0.05	J
Delta-HCH	0.03	J	<0.05	U	0.03	J	0.14	
Gamma-HCH	0.20		<0.04	U	<0.04	U	0.85	
DDMU	<0.07	U	<0.07	U	<0.07	U	1.65	
2,4'-DDD	0.21		0.43		<0.05	U	0.61	
4,4'-DDD	0.02	J	<0.05	U	< 0.05	U	< 0.05	U
2,4'-DDE	0.01	J	<0.06	U	0.16		< 0.06	U
4,4'-DDE	< 0.05	U	0.18		1.97		3.89	
2,4'-DDT	0.01	J	<0.05	U	<0.05	U	< 0.05	
4,4'-DDT	0.11		<0.05	U	<0.05	U	0.09	
1,2,3,4-Tetrachlorobenzene	<0.07	U	<0.07	U	<0.07	U	<0.07	U
1,2,4,5-Tetrachlorobenzene	<0.08	U	<0.08	U	<0.08	U	<0.08	U
Hexachlorobenzene	0.03	J	<0.05	U	0.12		1.48	
Pentachloroanisole	< 0.05	U	<0.05	U	<0.05	U	< 0.05	U
Pentachlorobenzene	<0.07	U	<0.07	U	<0.07	U	< 0.07	U
Endosulfan II	< 0.04	U	<0.04	U	2.15		< 0.04	U
Endosulfan I	< 0.04	U	<0.04	U	<0.04	U	< 0.04	U
Endosulfan Sulfate	< 0.04	U	<0.04	U	<0.04	U	< 0.04	U
Mirex	< 0.06	U	<0.06	U	0.14		0.03	J
Chlorpyrifos	<0.06	U	<0.06	U	<0.06	U	<0.06	U

LEED Co - Lake Erie Organochlorine Data Client Submitted Samples

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 15.01 80 20 1X	LED0038 PC04, PC05R1, PC06R2, PC07 Sediment NA 09/21/16 11/09/16 ENV3617 16-Nov-2016, 04:34 ECD1DUALM 15.06 18.12 83 17 1X	LED0039 PC09, PC10 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 06:27 ECD1DUAL.M 15.00 19.54 77 23 1X	LED0046 BC01, BC02, BC03 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 08:20 ECD1DUAL.M 15.03 65.30 23 77 1X
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Su Corrected Q Conc. (ng/dry g)	Su Corrected Q Conc. (ng/dry g)	Su Corrected Q Conc. (ng/dry g)
PCB1 PCB7/9 PCB8/5 PCB15 PCB16/32	<0.08 U <0.08 U 0.04 J <0.08 U <0.08 U	<0.08 U <0.08 U <0.08 U <0.08 U <0.08 U <0.04 U	<0.08 U <0.08 U 3.40 4.56 4 98	<0.08 U <0.08 U <0.08 U 0.35 1 13
PCB18 PCB22/51 PCB24/27 PCB25 PCB26	0.03 J <0.04 U 0.03 J <0.04 U <0.04 U <0.04 U	<0.04 U 0.58 <0.04 U 0.58 <0.04 U 0.67 <0.04 U	10.92 11.45 1.39 2.41 4.26	0.33 1.05 0.06 0.61 0.24
PCB28 PCB29 PCB31 PCB33/53/20 PCB40	0.03 J <0.06 U <0.04 U <0.04 U <0.04 U <0.07 U	0.06 J <0.06 U <0.04 U 1.08 <0.07 U	15.19 0.03 J 18.95 13.71 4.53	1.78 0.30 1.69 0.94 0.31
PCB41/64 PCB42/59/37 PCB43 PCB44 PCB45 PCB45	<pre><0.07 U <0.07 U <0.07 U 0.07 J <0.07 U 0.03 J 0.03 J 0.06 U </pre>	<0.07 U <0.07 U 0.45 <0.07 U 0.04 J 0.04 J	<0.07 U 9.78 0.64 14.79 3.03 1.41	<0.07 U 0.62 1.25 0.98 0.14
PCB47/48/75 PCB47/48/75 PCB52 PCB56/60 PCB66	 0.07 U 0.07 U 0.02 J 0.12 <0.07 U 0.02 J 	0.03 3 0.22 0.24 0.17 <0.07 U 0.39	1.41 3.73 11.34 17.77 20.84 17.54	1.93 1.15 3.00 1.43 1.93
PCB70 PCB74/61 PCB81 PCB82 PCB83	0.09 0.06 J <0.07 U <0.04 U <0.04 U	<0.07 U <0.07 U <0.07 U <0.07 U <0.04 U 0.04 J	23.80 12.50 <0.07 U 4.14 1.21	2.96 1.90 <0.07 U 0.93 0.24
PCB84 PCB85 PCB86 PCB87/115 PCB88	0.01 J <0.04 U 0.05 <0.05 U 0.01 J	<0.04 U 0.05 0.06 <0.05 U <0.04 U	3.91 4.31 <0.04 U 8.08 <0.04 U	0.78 0.98 <0.04 U 1.75 <0.04 U
PCB92 PCB95 PCB97 PCB99 PCB101/90	<0.04 U 0.01 J <0.04 U 0.01 J 0.02 J	<0.04 U 0.25 0.05 0.04 J 0.19	3.90 3.98 6.22 7.86 16.79	<0.04 U 1.46 0.74 1.25 3.14
PCB105 PCB107 PCB110/77 PCB114/131/122 PCB118	<0.04 U <0.04 U 0.07 <0.04 U 0.01 J	<0.04 U <0.04 U <0.05 U <0.04 U 0.55	6.40 2.78 17.68 0.26 12.32	1.43 1.16 5.35 <0.04 U 3.24
PCB128 PCB129/126 PCB136 PCB138/160 PCB141/179	<0.07 U <0.1 U <0.1 U <0.1 U <0.1 U	0.05 J 0.29 <0.1 U 0.38 <0.1 U	2.20 0.46 2.12 12.53 3.64	0.94 0.11 <0.1 U 3.14 0.73
PCB146	<0.1 U	<0.1 U <0.1 U	1.42	0.70

LEED Co - Lake Erie Organochlorine Data Client Submitted Samples

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 18.67 80 20 1X	LED0038 PC04, PC05R1, PC06R2, F Sediment NA 09/21/16 11/09/16 ENV3617 16-Nov-2016, 04:34 ECD1DUAL.M 15.06 18.12 83 17 1X	PC07	LED0039 PC09, PC10 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 06:27 ECD1DUAL.M 15.00 19.54 77 23 1X	LED0046 BC01, BC02, BC03 Sediment NA 10/12/16 11/09/16 ENV3617 16-Nov-2016, 08:20 ECD1DUAL.M 15.03 65.30 23 77 1X
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Su Corrected Conc. (ng/dry g)	Q	Su Corrected C Conc. (ng/dry g)	Su Corrected Q Conc. (ng/dry g)
PCB149/123 PCB151 PCB153/132 PCB156/171/202 PCB158 PCB166 PCB167 PCB169 PCB170/190 PCB172 PCB174 PCB176/137 PCB177 PCB178 PCB180 PCB183 PCB183 PCB185 PCB185 PCB185 PCB191 PCB194 PCB194 PCB195/208 PCB195/208 PCB196/203 PCB196/203 PCB200 PCB200 PCB201/157/173 PCB205 PCB205 PCB206 PCB209 Total HCH Total Chlordane Total PCB	0.02 J <0.1 U 0.01 J <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.0 U 0.05 U <0.05 U <0.04 U <0.04 U <0.05 U		<0.1 U 0.1 U 0.65 0.82 0.28 <0.1 U <0.1 U <0.1 U 0.1 U 0.08 <0.05 U 2.06 0.80 0.24 0.33 <0.05 U 0.52 0.76 0.19 <0.05 U 1.65 0.10 <0.05 U 1.01 <0.08 U <0.05 U 1.01 <0.08 U <0.05 U 1.02 0.10 <0.05 U 0.10 <0.05 U 0.00 U 0.00 U 0.43 0.60 15.90	$\begin{array}{c} 6.71\\ 2.43\\ 15.25\\ 0.76\\ 1.33\\ < 0.1\\ U\\ < 0.5\\ 0.65\\ 0.68\\ 0.99\\ 0.49\\ 0.87\\ 0.05\\ 0.52\\ 0.99\\ 0.49\\ 0.87\\ 0.05\\ 0.52\\ 0.99\\ 0.37\\ 1.29\\ 1.37\\ 0.11\\ 0.40\\ 0.21\\ 0.37\\ 0.17\\ 0.11\\ 0.40\\ 0.21\\ 0.37\\ 0.11\\ 0.40\\ 0.21\\ 0.37\\ 0.17\\ 0.13\\ 0.11\\ 0.40\\ 0.21\\ 0.37\\ 0.17\\ 0.13\\ 0.17\\ 0.03\\ 0.68\\ 2.13\\ 401.17\\ 0.03\\ 0.68\\ 0.13\\ 0.13\\ 0.03\\ 0.68\\ 0.13\\ 0.03\\ 0.68\\ 0.13\\ 0.03\\ 0.68\\ 0.13\\ 0.03\\ 0.68\\ 0.13\\ 0.03\\ 0$	$\begin{array}{c} 2.17\\ 0.60\\ 5.63\\ 0.61\\ 0.17\\ 0.12\\ 0.08\ J\\ < 0.12\\ 0.08\ J\\ < 0.1\ U\\ 1.93\\ 0.37\\ 1.07\\ 0.12\\ 0.52\\ 0.16\\ 1.50\\ 0.44\\ 0.52\\ 1.81\\ 0.04\ J\\ 0.20\\ 0.37\\ 0.17\\ 0.78\\ 1.00\\ 0.22\\ 1.06\\ 0.22\\ 1.06\\ 0.22\\ 0.49\\ \end{array}$
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)		Su Recovery (%)	Su Recovery (%)
DBOFB PCB 103 PCB 198	84 74 83		84 83 90	77 75 81	80 78 80

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	ENV3617A Method Blank Sediment NA NA 11/09/16 ENV3617 15-Nov-2016, 06:01 ECD1DUAL.M 15.07 NA NA NA NA NA 1X			
Target Compounds	Su Corrected Conc. (ng/dry g)	Q(Q 3X MDL	Actual MDL
Aldrin Dieldrin Endrin	<0.06 <0.05 <0.06	U U U	0.17 0.15 0.17	0.06 0.05 0.06
Heptachlor Heptachlor-Epoxide Oxychlordane Alpha-Chlordane Gamma-Chlordane Trans-Nonachlor Cis-Nonachlor	<0.04 <0.06 <0.06 <0.05 <0.05 <0.05 <0.05 <0.04	U U U U U U U	0.12 0.18 0.19 0.14 0.16 0.15 0.13	0.04 0.06 0.05 0.05 0.05 0.05 0.04
Alpha-HCH Beta-HCH Delta-HCH Gamma-HCH	<0.08 <0.05 <0.05 <0.04	U U U U	0.23 0.15 0.14 0.11	0.08 0.05 0.05 0.04
DDMU 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE 2,4'-DDT 4,4'-DDT	<0.07 <0.05 <0.05 <0.06 <0.05 <0.05 <0.05	U U U U U U U	0.20 0.14 0.16 0.17 0.14 0.14 0.14	0.07 0.05 0.05 0.06 0.05 0.05 0.05
1,2,3,4-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene Hexachlorobenzene Pentachlorobenzene Endosulfan II Endosulfan I Endosulfan Sulfate Mirex Chlorpyrifos	<0.07 <0.08 <0.05 <0.05 <0.07 <0.04 <0.04 <0.04 <0.04 <0.06 <0.06		0.20 0.24 0.16 0.14 0.20 0.12 0.12 0.13 0.17 0.17	0.07 0.08 0.05 0.05 0.07 0.04 0.04 0.04 0.04 0.06 0.06

LEED Co - Lake Erie Organochlorine Data Method Blank Report

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	ENV3617A Method Blank Sediment NA NA 11/09/16 ENV3617 15-Nov-2016, 06:01 ECD1DUAL.M 15.07 NA NA NA NA NA			
Target Compounds	Su Corrected Conc. (ng/dry g)	Q	Q 3X MDL	Actual MDL
PCB1 PCB7/9 PCB8/5 PCB15 PCB15 PCB16/32	<0.08 <0.08 <0.08 <0.08 <0.08	U U U U U	0.24 0.24 0.24 0.24 0.24	0.08 0.08 0.08 0.08 0.08
PCB18 PCB22/51 PCB24/27 PCB25	<0.04 <0.04 <0.04 <0.04 <0.04	U U U U	0.13 0.13 0.13 0.13	0.04 0.04 0.04 0.04 0.04
PCB26	<0.04	U	0.13	0.04
PCB28	<0.06	U	0.18	0.06
PCB29	<0.06	U	0.19	0.06
PCB31	<0.04	U	0.13	0.04
PCB33/53/20	<0.04	U	0.13	0.04
PCB40	<0.07	U	0.21	0.07
PCB41/64	<0.07	U	0.21	0.07
PCB42/59/37	<0.07	U	0.21	0.07
PCB43	<0.07	U	0.21	0.07
PCB44	<0.07	U	0.21	0.07
PCB45	<0.07	U	0.21	0.07
PCB46	<0.07	U	0.21	0.07
PCB47/48/75	<0.07	U	0.21	0.07
PCB49	<0.07	U	0.21	0.07
PCB52	<0.07	U	0.21	0.07
PCB56/60	<0.07	U	0.21	0.07
PCB66	<0.06	U	0.17	0.06
PCB70	<0.07	U	0.21	0.07
PCB74/61	<0.07	U	0.21	0.07
PCB81	<0.07	U	0.21	0.07
PCB82	<0.04		0.13	0.04
PCB83	<0.04		0.13	0.04
PCB84	<0.04		0.13	0.04
PCB85	<0.04		0.13	0.04
PCB86 PCB87/115 PCB88 PCB92 PCB95	<0.04 <0.05 <0.04 <0.04		0.13 0.16 0.13 0.13	0.04 0.05 0.04 0.04
PCB95 PCB97 PCB99 PCB101/90 PCB105	<0.04 <0.04 <0.04 <0.04 <0.04		0.13 0.13 0.13 0.13	0.04 0.04 0.04 0.04 0.04
PCB107 PCB110/77 PCB114/131/122 PCB118	<0.04 <0.04 <0.05 <0.04 <0.05		0.13 0.13 0.15 0.13 0.16	0.04 0.05 0.04 0.05
PCB128	<0.07	U	0.20	0.07
PCB129/126	<0.1	U	0.29	0.10
PCB136	<0.1	U	0.29	0.10
PCB138/160	<0.1	U	0.29	0.10
PCB141/179	<0.1	U	0.29	0.10
PCB146	<0.1	U	0.29	0.10

LEED Co - Lake Erie Organochlorine Data Method Blank Report

Lab ID	ENV3617A				
Sample ID	Method Blank				
Matrix	Sediment				
Collection Date	NA				
Received Date	NA				
Extraction Date	11/09/16				
Extraction Batch	ENV3617				
Date Acquired	15-Nov-2016, 06:01				
Method	ECD1DUAL.M				
Sample Dry Weight (g)	15.07				
Sample Wet Weight (g)	NA				
% Dry	NA				
% Moisture	NA				
Dilution	1X				
Target Compounds	Su Corrected	Q	Q	3X MDI	Actual MDL
	conc. (ngrary g)			NUDL	
PCB149/123	<0.1	U		0.29	0.10
PCB151	<0.1	U		0.29	0.10
PCB153/132	⊲0.04	U		0.11	0.04
PCB156/171/202	<0.1	U		0.29	0.10
PCB158	<0.1	U		0.29	0.10
PCB166	<0.1	U		0.29	0.10
PCB167	<0.1	U		0.29	0.10
PCB169	<0.1	U		0.29	0.10
PCB170/190	<0.09	U		0.28	0.09
PCB172	<0.05	U		0.14	0.05
PCB174	<0.05	U		0.14	0.05
PCB1/6/13/	<0.05			0.14	0.05
PCB1//	<0.05			0.14	0.05
PCB1/0 DCB190	<0.05	H		0.14	0.05
PCB100	<0.05	ň		0.14	0.05
PCB185	<0.05	ŭ		0.14	0.05
PCB187	<0.05	ŭ		0.15	0.05
PCB189	<0.05	ŭ		0.14	0.05
PCB191	<0.05	Ū		0.14	0.05
PCB194	<0.04	U		0.12	0.04
PCB195/208	<0.04	U		0.12	0.04
PCB196/203	<0.04	U		0.12	0.04
PCB199	<0.08	U		0.24	0.08
PCB200	<0.04	U		0.12	0.04
PCB201/157/173	<0.04	U		0.12	0.04
PCB205	<0.04	U		0.12	0.04
PCB206	<0.05	U		0.15	0.05
PCB209	<0.05	U		0.16	0.05
Total HCH	<0 1		U	0.29	0.10
Total Chlordane	<0.18		ũ	0.54	0.18
Total DDT	<0.15		Ũ	0.45	0.15
Total PCB	<1.25		U	3.76	1.25
Surrogate (Su)	Su Recovery (%)				
DBOFB	90				
PCB 103	95				
PCB 198	100				

Lab ID

LEED Co - Lake Erie Organochlorine Data Matrix Spike Report

Edit ID	Eler of the		
Sample ID	Blank Spike		
Matrix	Sediment		
Collection Date	NA		
Received Date	NA		
Extraction Date	11/09/16		
Extraction Batch	ENV3617		
Date Acquired	15-Nov-2016, 07:54		
Method	ECD1DUAL.M		
Sample Dry Weight (g)	1.00		
Sample Wet Weight (g)	NA		
% Drv	NA		
% Moisture	NA		
Dilution	1X		
Target Compounds	Su Corrected Q	Recovery Q	Spike Amount
	Conc. (ng/dry g)	(%)	(ng)
Aldrin	34.02	85	40
Dieldrin	30.86	77	40
Endrin	34.01	85	40
Heptachlor	44.33	111	40
Heptachlor-Epoxide	36.93	92	40
Oxychlordane	34.06	85	40
Alpha-Chlordane	36.65	92	40
Gamma-Chlordane	35.13	87	40
Trans-Nonachlor	36.54	91	40
Cis-Nonachlor	37.25	93	40
	01.20		
Alpha-HCH	34.37	86	40
Beta-HCH	35.20	88	40
Delta-HCH	30.84	77	40
Gamma-HCH	33.06	83	40
DDMU	40.76	102	40
2.4'-DDD	36.67	92	40
4.4'-DDD	35.74	89	40
2.4'-DDE	37.44	94	40

ENV3617B

Alpha-HCH	34.37	86	
Beta-HCH	35.20	88	
Delta-HCH	30.84	77	
Gamma-HCH	33.06	83	
DDMU	40.76	102	
2,4'-DDD	36.67	92	
4,4'-DDD	35.74	89	
2,4'-DDE	37.44	94	
4,4'-DDE	34.57	87	
2,4'-DDT	39.49	99	
4,4'-DDT	39.15	98	
1,2,3,4-Tetrachlorobenzene	38.81	97	
1,2,4,5-Tetrachlorobenzene	39.87	100	
Hexachlorobenzene	38.63	97	
Pentachloroanisole	41.07	103	
Pentachlorobenzene	35.74	89	
Endosulfan II	19.04	48	
Endosulfan I	NA		
Endosulfan Sulfate	36.06	90	
Mirex	42.36	106	
Chlorpyrifos	36.98	92	

B&B Laboratories Project J16222 Report 16-3589			LEED Co - Lake Erie Organochlorine Data Matrix Spike Report
Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	ENV3617B Blank Spike Sediment NA NA 11/09/16 ENV3617 15-Nov-2016, 07:54 ECD1DUAL.M 1.00 NA NA NA NA NA 1X		
Target Compounds	Su Corrected Conc. (ng/dry g)	Q Recovery Q (%)	Spike Amount (ng)
PCB1 PCB7/9 PCB8/5 PCB15 PCB16/32	NA NA 33.07 NA NA	83	40
PCB18 PCB22/51 PCB24/27 PCB25 DCB25	41.12 NA NA	103	40
PCB26 PCB28 PCB29 PCB31 PCB33/53/20 PCB40 PCB41/64 PCB42/59/37	NA 40.98 41.62 NA NA NA NA NA	102 104	40 40
PCB43 PCB44 PCB45 PCB46 PCB47/48/75	NA 41.02 NA NA	103	40
PCB49 PCB52 PCB56/60	NA 40.90 NA	102	40
PCB66 PCB70 PCB74/61 PCB81 PCB82 PCB82 PCB83 PCB84 PCB85 PCB85	40.61 NA NA NA NA NA NA	102	40
PC886 PC887/115 PC888 PC892 PC895 PC897 PC890	NA 39.95 NA NA NA NA	100	40
PCB101/90 PCB105 PCB107	41.45 36.83	104 92	40 40
PCB110/77 PCB114/131/122	40.92 NA	102	40
PCB118 PCB128 PCB129/126 PCB129/126	40.32 42.00 NA	101 105	40 40
PCB136 PCB138/160 PCB141/179 PCB146	NA 41.55 NA NA	104	40

B&B Laboratories
Project J16222
Report 16-3589

LEED Co - Lake Erie Organochlorine Data Matrix Spike Report

Lab ID	ENV3617B		
Sample ID	Blank Spike		
Matrix	Sediment		
Collection Date	NA		
Received Date	NA		
Extraction Date	11/09/16		
Extraction Batch	ENV3617		
Date Acquired	15-Nov-2016, 07:54		
Method	ECD1DUAL.M		
Sample Dry Weight (g)	1.00		
Sample Wet Weight (g)	NA		
% Dry	NA		
% Moisture			
Diluuon	IA		
Target Compounds	Su Corrected		Spike Amount
raiget compounds	Conc. (ng/dry g)	(%)	(ng)
	conto: (rigran) g)	(,)	(197
PCB149/123	NA		
PCB151	NA		
PCB153/132	42.06	105	40
PCB156/171/202	NA		
PCB158	NA		
PCB166	NA		
PCB167	NA		
PCB169	NA		
PCB170/190	42.49	106	40
PCB172	NA		
PCB174	NA		
PCB176/137	NA		
PCB177	NA		
PCB178	NA		
PCB180	41.53	104	40
PCB183	NA		
PCB185	NA		
PCB187	41.91	105	40
PCB189	NA		
PCB191	NA		
PCB194	NA		
PCB195/208	44.31	111	40
PCB196/203	NA		
PCB199	43.62	109	40
PCB200	NA		
PCB201/157/173	NA		
PCB205	NA		
PCB206	44.76	112	40
PCB209	46.20	116	40
	Average % Recovery	96	

Surrogate (Su)	Su Recovery (%)	
DBOFB	90	
PCB 103	94	
PCB 198	104	

B&B Laboratories
Project J16222
Report 16-3589

LEED Co - Lake Erie Organochlorine Data Laboratory Duplicate Report

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 18.67 80 20 1X	ENV3617E PC01R, PC02, F Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 21 ECD1DUAL. 15.03 18.70 80 20 1X	PC03 1:03 M				_
Target Compounds	Su Corrected C Conc. (ng/dry g)	Su Correcte Conc. (ng/dry	d Q (g)	RPD Q (%)	3X MDL	MDL	
Aldrin	<0.06 L	J	<0.06 U		0.166	0.06	
Dieldrin	<0.05 U		<0.05 U		0.147	0.05	
Endrin	<0.06 U		<0.06 U		0.167	0.06	
Heptachlor	0.02 J		0.02 J	0	0.124	0.04	
Heptachlor-Epoxide	<0.06 U		<0.06 U		0.179	0.06	
Oxychlordane	0.06 J		0.06 J	0	0.188	0.06	
Alpha-Chlordane	0.02 J		0.02 J	0	0.138	0.05	
Gamma-Chlordane	<0.06 U		<0.06 U		0.165	0.06	
Trans-Nonachlor	<0.05 U		<0.05 U		0.148	0.05	
Cis-Nonachlor	0.01 J		0.02 J	67	0.132	0.04	
Alpha-HCH	<0.08 U		<0.08 U		0.229	0.08	
Beta-HCH	0.04 J		0.04 J	0	0.151	0.05	
Delta-HCH	0.03 J		0.03 J	0	0.139	0.05	
Gamma-HCH	0.20		0.21	5	0.110	0.04	
DDMU	<0.07 U		<0.07 U	-	0.204	0.07	
2,4'-DDD	0.21		0.22	5	0.137	0.05	
4,4'-DDD	0.02 J		0.03 J	40	0.159	0.05	
2,4'-DDE	0.01 J		0.01 J	U	0.170	0.06	
4,4-DDE	<0.05 0		<0.05 0		0.141	0.05	
2,4'-DDT	0.01 J 0.11		0.01 J 0.12	9	0.138	0.05	
1,2,3,4-Tetrachlorobenzene	<0.07 U		<0.07 U		0.199	0.07	
1245-Tetrachlorobenzene	<0.08 U		<0.08 U		0.240	0.08	
Hexachlorobenzene	0.03 J		0.03 J	0	0.163	0.05	
Pentachloroanisole	<0.05 U		<0.05 U	-	0.137	0.05	
Pentachlorobenzene	<0.07 U		<0.07 U		0.201	0.07	
Endosulfan II	<0.04 U		<0.04 U		0.117	0.04	
Endosulfan I	⊲0.04 U		<0.04 U		0.120	0.04	
Endosulfan Sulfate	<0.04 U		<0.04 LI		0.127	0.04	
Mirex	<0.04 U		<0.06.11		0 173	0.06	
Chlorpyrifos	<0.06 U		<0.06 U		0.173	0.06	

B&B Laboratories Project J16222 Report 16-3589		LEED Co - L Organochlor Laboratory Dupl	ake Erie rine Data licate Report		
Lab ID Sample ID Matrix Collection Date Received Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 18.67 80 20 1X	ENV3617E PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 21:03 ECD1DUALM 15.03 18.70 80 20 1X			
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Su Corrected C Conc. (ng/dry g)	0 RPD Q (%)	3X MDL	MDL
PCB1 PCB7/9 PCB8/5 PCB15 PCB16/32 PCB16/32 PCB22/51 PCB22/51 PCB24/27 PCB25 PCB26 PCB28 PCB29 PCB31 PCB3153/20 PCB41 PCB41/64 PCB42/59/37 PCB43 PCB44 PCB45 PCB46	<0.08 U <0.08 U 0.04 J <0.08 U <0.04 U <0.03 J <0.04 U <0.03 J <0.04 U <0.07 U	<0.08 U <0.08 U 0.03 J <0.08 U <0.04 U <0.07 U <0.07 U <0.07 J <0.07 J 0.02 J 0.07 J	29 0 40 0 40 15	0.245 0.245 0.245 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.192 0.134 0.134 0.134 0.215 0.215 0.215 0.215 0.215 0.215	0.08 0.08 0.08 0.04 0.04 0.04 0.04 0.04
PCB47/48/75 PCB49 PCB52 PCB56/60 PCB70 PCB74/61 PCB81 PCB82 PCB82 PCB83 PCB84 PCB85 PCB86 PCB86 PCB86 PCB92 PCB95 PCB97 PCB99	<0.07 U 0.02 J 0.12 <0.07 U 0.02 J 0.09 0.06 J <0.07 U <0.04 U <0.04 U 0.01 J <0.05 U 0.05 U 0.01 J <0.04 U 0.01 J <0.04 U 0.01 J	<0.07 U 0.02 J 0.12 0.07 U 0.02 J 0.09 0.06 J <0.07 U <0.04 U <0.04 U <0.04 U 0.01 J <0.04 U 0.05 U 0.05 U 0.05 J <0.05 U 0.01 J <0.04 U 0.01 J <0.05 U 0.05 U 0.02 J <0.05 U 0.05 U 0.01 U 0.01 U 0.05 U 0.05 U 0.01 U 0.02 U 0.05 U 0.05 U 0.02 U 0.02 U 0.05 U 0.01 U 0.02 U		0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
PCB101/90 PCB105 PCB107 PCB110/77 PCB114/131/122 PCB118 PCB128 PCB128/160 PCB138/160 PCB134/1/179 PCB146	0.01 J 0.02 J <0.04 U <0.04 U <0.07 <0.04 U 0.01 J <0.07 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U	0.02 J 0.03 J <0.04 U <0.04 U <0.08 <0.04 U 0.01 J <0.07 U <0.1 U <0.1 U <0.1 U <0.1 U <0.1 U	40 13 0	0.132 0.132 0.132 0.132 0.150 0.132 0.159 0.196 0.287 0.287 0.287 0.287	0.04 0.04 0.04 0.05 0.04 0.05 0.07 0.10 0.10 0.10 0.10 0.10 0.10

LEED Co - Lake Erie Organochlorine Data Laboratory Duplicate Report

Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 22:55 ECD1DUAL.M 15.01 18.67 80 20 1X		ENV3617E PC01R, PC02, PC03 Sediment NA 10/12/16 11/09/16 ENV3617 15-Nov-2016, 21:03 ECD1DUAL.M 15.03 18.70 80 20 1X				
Target Compounds	Su Corrected Conc. (ng/dry g)	Q	Su Corrected Conc. (ng/dry g)	Q	RPD Q (%)	3X MDL	MDL
PCB149/123 PCB151 PCB153/132 PCB156/171/202 PCB156 PCB166 PCB167 PCB169 PCB170/190 PCB172 PCB174 PCB176/137 PCB177 PCB178 PCB180 PCB183 PCB183 PCB185 PCB185 PCB185 PCB185 PCB187 PCB194 PCB194 PCB195/208 PCB196/203 PCB199 PCB200 PCB201/157/173 PCB205 PCB206 PCB209	0.02 <0.1 0.01 <0.1 <0.1 <0.1 <0.1 <0.09 0.15 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<u></u>	0.02 <0.1 0.01 <0.1 <0.1 <0.1 <0.09 0.09 <0.09 <0.05 <0.05 <0.05 <0.05 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.04 <0.04 <0.04 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <		0	0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.278 0.143 0.119	0.10 0.04 0.10 0.10 0.10 0.10 0.10 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.0
Total HCH Total Chlordane Total DDT Total PCB	0.28 0.11 0.37 0.98	J	0.28 0.13 0.40 1.01	} } J J	0 17 8 3	0.295 0.546 0.454 3.769	0.10 0.18 0.15 1.26
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)				
DBOFB PCB 103 PCB 198	84 74 83		82 71 85				

B&B Laboratories Project J16222 Report 16-3589			LEED Co - Lake Erie Organochlorine Data Matrix Spike Report			
Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	LED0038 PC04, PC05R1, PC06R2, Sediment NA 09/21/16 11/09/16 ENV3617 16-Nov-2016, 04:34 ECD1DUAL.M 15.06 18.12 83 17 1X	PC07	ENV3617D PC04, PC05R1, PC06R2, Sediment NA 09/21/16 11/09/16 ENV3617 15-Nov-2016, 15:25 ECD1DUAL.M 15.06 18.12 83 17 1X	PC07		
Target Compounds	Su Corrected Conc. (ng/dry g)	Q	Su Corrected Conc. (ng/dry g)	(Q Recovery Q Q (%)	Spike Amount (ng)
Aldrin		<0.06 U		2.62	99	40
Dieldrin		<0.05 U		2.33	88	40
Endrin		<0.06 U		2.33	87	40
Heptachlor		<0.04 U		2.32	87	40
Heptachlor-Epoxide		<0.06 U		2.33	88	40
Oxychlordane		<0.06 U		2.74	103	40
Alpha-Chlordane		0.32		2.34	76	40
Gamma-Chlordane		<0.05 U		2.39	90	40
Trans-Nonachlor		0.04 J		2.46	91	40
Cis-Nonachlor		0.07		2.43	89	40
Alpha-HCH		<0.08 U		2.32	87	40
Beta-HCH		<0.05 U		2.43	91	40
Delta-HCH		<0.05 U		1.86	70	40
Gamma-HCH		<0.04 U		2.38	90	40
DDMU		<0.07 U		2.60	98	40
2,4'-DDD		0.43		3.47	114	40
4,4'-DDD		<0.05 U		2.74	103	40
2,4'-DDE		<0.06 U		2.32	8/	40
2.4' DDT		<0.0511		2.03	80	40
4,4'-DDT		<0.05 U		1.97	74	40
1.2.3.4-Tetrachlorobenzene		<0.07 U		2.65	100	40
1.2.4.5-Tetrachlorobenzene		<0.08 U		2.22	84	40
Hexachlorobenzene		<0.05 U		2.76	104	40
Pentachloroanisole		<0.05 U		3.10	117	40
Pentachlorobenzene		<0.07 U		2.55	96	40
Endosulfan II		<0.04 U		1.96	74	40
Endosulfan I		<0.04 U		NA		
Endosulfan Sulfate		<0.04 U		2.78	104	40
Mirex		<0.06 U		2.46	93	40
Chlorpyrifos		<0.06 U		<0.06 (10 1	40

B&B Laboratories		LEED Co - Lake Erie			
Project J16222		Organochlorine Data			
Report 16-3589		Matrix Spike Report			
Lab ID	LED0038	ENV3617D	PC07		
Sample ID Matrix	PC04, PC05R1, PC06R2, PC07	PC04, PC05R1, PC06R2,	PC07		
Collection Date	NA	Sediment			
Deceived Date	09/21/16	09/21/16			
Extraction Date	11/09/16	11/09/16			
Extraction Batch	ENV3617	ENV3617			
Date Acquired	16-Nov-2016 04:34	15-Nov-2016 15:25			
Method	ECD1DUAL.M	ECD1DUAL.M			
Sample Dry Weight (g)	15.06	15.06			
Sample Wet Weight (g)	18.12	18.12			
% Dry	83	83			
% Moisture	17	17			
Dilution	1X	1X			
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Su Corrected Conc. (ng/dry g)	C	Q Recovery Q Q (%)	Spike Amount (ng)
DCP1	<0.0811		NIA		
DCB7/9	<0.00 0		NA		
PCB8/5	<0.00 0		2.75	103	40
PCB15	<0.00 U		NA	.00	
PCB16/32	<0.00 0		NA		
PCB18	<0.04.0		2 12	80	40
PCB22/51	~0.04 0		NA NA		
PCB24/27	<0.04 U		NA		
PCB25	0.67		NΔ		
PCB26	<0.04 U		NA		
PCB28	0.06 J		1.86	68	40
PCB29	<0.06 U		2.27	85	40
PCB31	<0.04 U		NA		
PCB33/53/20	1.08		NA		
PCB40	<0.07 U		NA		
PCB41/64	<0.07 U		NA		
PCB42/59/37	<0.07 U		NA		
PCB43	0.45		NA		
PCB44	<0.07 U		2.13	80	40
PCB45	0.04 J		NA		
PCB46	0.03 J		NA		
PCB4//48//5	0.22		NA		
PCB49	0.24		NA 244	74	40
PCB52 DCB56/60	<0.07		2.14 NA	74	40
PCB66	0.07 0		2.84	92	40
PCB70	<0.00		2.04 ΝΔ	52	40
PCB74/61	<0.07 U		NA		
PCB81	<0.07 U		NA		
PCB82	<0.04 U		NA		
PCB83	0.04 J		NA		
PCB84	<0.04 U		NA		
PCB85	0.05		NA		
PCB86	0.06		NA		
PCB87/115	<0.05 U		2.55	96	40
PCB88	<0.04 U		NA		
PCB92	<0.04 U		NA		
PCB95	0.25		NA		
PCB97	0.05		NA		
PCB99	0.04 J		NA	~	10
PCB101/90	0.19		2.69	94	40
PCB103	<0.04 U		2.13	105	40
PCB110/77	<0.04 U		2.84	107	40
PCB114/131/122	<0.03 U		2.04 NA	107	-0
PCB118	~0.04 0		3.09	96	40
PCB128	0.05 J		2.92	108	40
PCB129/126	0.29		NA		
PCB136	<0.1 U		NA		
PCB138/160	0.38		2.88	94	40
PCB141/179	<0.1 U		NA		
PCB146	<0.1 U		NA		

B&B Laboratories			LEED Co - Lake Erie			
Project J16222			Organochlorine Data			
Report 16-3589			Matrix Spike Report			
Lab ID	LED0038		ENV3617D			
Sample ID	PC04, PC05R1, PC06R2,	PCU/	PC04, PC05R1, PC06R2,	PC07		
Matrix	Sediment		Sediment			
Collection Date	NA		NA			
Received Date	09/21/16		09/21/16			
Extraction Date	11/09/16		11/09/16			
Extraction Batch	ENV3617		ENV3617			
Date Acquired	16-Nov-2016, 04:34		15-Nov-2016, 15:25			
Method	ECD1DUAL.M		ECD1DUAL.M			
Sample Dry Weight (g)	15.06		15.06			
Sample Wet Weight (g)	18.12		18.12			
% Dry	63		63			
% Moisture	17		1/			
Dilution	1X		1X			
Terret Compounds	Su Corrected	0	Su Corrected		Beenview O.O.	Spike Amount
rarget compounds	Su Conected	Q	Su Conecteu			Spike Amount
	Conc. (rig/ary g)		Conc. (ng/ary g)		(%)	(ng)
PCB149/123		<0111		NΔ		
PCB151		<0.1 U		NA		
PCB153/132		0.65		2.95	87	40
PCB156/171/202		0.82		NA		
PCB158		0.28		NA		
PCB166		<0.1 U		NA		
PCB167		<0.1 U		NA		
PCB169		<01U		NA		
PCB170/190		0 17		2.79	99	40
PCB172		0.08		NA		
PCB174		<0.0511		NΔ		
PCB176/137		2.06		NΔ		
PCB177		0.80		NA		
DCB178		0.00		NA		
PCB180		0.24		2.57	84	40
DCB193		<0.0511		2.57		40
DCB105		0.03 0		NA		
DCB197		0.32		2.62	70	40
PCB107		0.70		2.02	70	40
PCB109		0.19		NA NA		
PCB191		<0.05 0		NA NA		
PCB194		1.65		NA		10
PCB195/208		0.10		2.38	86	40
PCB196/203		0.19		NA		
PCB199		<0.08 U		1.82	69	40
PCB200		<0.04 U		NA		
PCB201/157/173		1.10		NA		
PCB205		0.10		NA		
PCB206		<0.05 U		3.14	118	40
PCB209		<0.05 U		2.08	78	40
Average % Recovery					89	

Surrogate (Su)	Su Recovery (%)	Su Recovery (%)
DBOFB	84	87
PCB 103	83	81
PCB 198	90	98
100 100	50	50

B&B Laboratories Project J16222 Report 16-3589		Stand	LEED Co - Lake Organochlorine ard Reference Ma	Erie Data terial Report	
Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	ENV3617C SRM 1941b Sediment NA NA 11/09/16 ENV3617 15-Nov-2016, 13:32 ECD1DUAL.M 4.00 4.10 98 2 1X			205/	2001
Target Compounds	Su Corrected	QQ	Certified Conc.	-30% Conc.	+30% Conc.
Aldrin Dieldrin Endrin	0.19 0.19		conc. (ngrory g)	conc. (ng/ury g)	conc. (ngrury g)
Heptachlor Heptachlor-Epoxide Oxychlordane Alpha-Chlordane Gamma-Chlordane Trans-Nonachlor Cis-Nonachlor	<0.16 0.10 <0.24 0.57 0.33 0.37 0.25	i J	0.85 0.57 0.44 0.38	0.52 0.33 0.26 0.23	1.25 0.86 0.66 0.56
Alpha-HCH Beta-HCH Delta-HCH Gamma-HCH	<0.29 0.06 0.12 <0.14	J			
DDMU 2,4'-DDD 4,4'-DDD 2,4'-DDE	<0.26 1.14 3.37 <0.21	•	4.66	2.94	6.66
4,4'-DDE 2,4'-DDT 4,4'-DDT	3.12 ⊲0.17 0.81		3.22	2.06	4.55
1,2,3,4-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene Hexachlorobenzene	<0.25 <0.3 7.77		5.83	3.82	8.07
Pentachloroanisole Pentachlorobenzene Endosulfan II Endosulfan Sulfate Mirex Chlorovrifos	 <0.17 <0.25 <0.15 <0.15 <0.25 <0.22 <0.22 <0.22 <0.22 <0.22 <0.22 		0.00	0.02	0.07

Project J16222 Report 16-3589	Stand	Organochlorine lard Reference Ma	Data terial Report	
Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Dry % Moisture Dilution	ENV3617C SRM 1941b Sediment NA 11/09/16 ENV3617 15-Nov-2016, 13:32 ECD1DUAL.M 4.00 4.10 98 2 1X	SRM 1941b	30%	+30%
Target Compounds	Su Corrected Q Q Conc. (ng/dry g)	Certified Conc. Conc. (ng/dry g)	Conc. Conc. (ng/dry g)	Conc. Conc. (ng/dry g)
PCB1 PCB7/9 PCB8/5 PCB15 PCB16/32	<0.31 <0.31 1.64 1.47 1.58	1.65	1.02	2.39
PCB18 PCB22/51 PCB24/27 PCB25 PCB26	2.04 2.03 0.87 1.01 0.99	2.39	1.47	3.48
PCB28 PCB29	3.99	4.52	2.77	6.62
PCB31 PCB33/53/20 PCB40 PCB41/64 PCB42/59/37 PCB43	3.00 1.88 0.55 ⊲0.27 1.40	3.18	1.94	4.67
PCB44 PCB45 PCB46 PCB47/48/75	3.57 0.43 0.81 2.84	3.85	2.56	5.27
PCB49	3.45	4.34	2.84	6.01
PCB52 PCB56/60	3.79	5.24	3.47	7.18
PCB66 PCB70 PCB74/61 PCB81 PCB82 PCB82 PCB83 PCB84 PCB85 PCB86	5.86 3.86 1.60 <0.27 <0.17 0.57 1.30 0.41 0.41	4.96	3.10	7.14
PCB87/115 PCB88 PCB92	0.73 <0.17 0.72	1.14	0.69	1.69
PCB95 PCB97	2.75 1.03	3.93	2.32	5.92
PCB99	2.01	2.90	1.78	4.24
PCB101/90 PCB105	5.04	5.11	3.34	7.09
PCB107	3.90	1.40	0.55	1.55
PCB110/77	5.08	4.62	2.98	6.47
PCB114/131/122	2.65	1.00	0.00	6.76
PCB118 PCB128	2.94	4.23	2.83	5.75
PCB129/126	0.29 J	0.70	0.10	5.55
PCB136	0.68			
PCB138/160 PCB141/179	3.70	3.60	2.32	5.04
PCB146	0.66			

LEED Co - Lake Erie

B&B Laboratories

B&B Laboratories Project J16222 Report 16-3589		Standa	LEED Co - Lake Organochlorine rd Reference Ma	Erie Data terial Report	
Lab ID Sample ID Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Dry Weight (g) Sample Wet Weight (g) % Dry % Moisture Dilution	ENV3617C SRM 1941b Sediment NA NA 11/09/16 ENV3617 15-Nov-2016, 13:32 ECD1DUAL.M 4.00 4.10 98 2 1X				
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Q	SRM 1941b Certified Conc. Conc. (ng/dry g)	-30% Conc. Conc. (ng/dry g)	+30% Conc. Conc. (ng/dry g)
PCB149/123	3.40		4.35	2.86	5.99
PCB153/132	4 19		5.47	3.61	7 53
PCB156/171/202	0.41		0.51	0.29	0.78
PCB158	0.00 U		0.01	0.20	0.10
PCB166	0.35 J				
PCB167	0.18 J				
PCB169	0.06 J				
PCB170/190	9.74	*	1.35	0.88	1.87
PCB172	0.51				
PCB174	0.72				
PCB176/137	0.12 J				
PCB177	0.24				
PCB178	0.27				
PCB180	2.51		3.24	1.91	4.88
PCB183	0.74		0.98	0.62	1.39
PCB185	2.92				
PCB187	2.12		2.17	1.37	3.11
PCB189	⊲0.18				
PCB191	<0.18				
PCB194	0.69		1.04	0.69	1.43
PCB195/208	0.53		0.65	0.41	0.92
PCB196/203	0.33				
PCB199	1.57				
PCB200	0.01 0		0.79	0.52	1.05
PCB201/15//1/5	0.39		0.70	0.52	1.05
PCB205	1.77		2 42	1.56	3 30
PCB209	4.39		4.86	3.09	6.90
Total HCH	0.2 J				
Total Chlordane	2				
Total DDT	8				
Total PCB	130				
Surrogate (Su)	Su Recovery (%)				
DBOFB	90				
PCB 103	94				
PCB 198	93				

5.4 APPENDIX D - TOTAL ORGANIC CARBON

B&B Laboratories Project J16222 Report 16-3589 LEED Co. - Lake Erie % Carbon Determination Client Submitted Samples

Laboratory ID Sample ID Matrix Collection Date Received Date	LED0037 PC01R, PC02, P Sediment NA 10/12/16	C0:	L 3 PC04, PC05 5	ED0038 5R1, PC06F Sediment NA 09/21/16	R2, PC07		LED0039 PC09, PC10 Sediment NA 10/12/16	E	LED0046 3C01, BC02, BC Sediment NA 10/12/16	03
Analysis Batch TC Preparation Date TC Analysis Date TC Sample Dry Weight (mg) Method TC	LECO1824 11/14/16 11/14/16 252.5 B&B SOP 100	5	LI B&E	ECO1824 11/14/16 11/14/16 252.7 3 SOP 1005	5		LECO1824 11/14/16 11/14/16 252.4 B&B SOP 1005		LECO1824 11/14/16 11/14/16 250.9 B&B SOP 100	5
Analysis Batch TOC Preparation Date TOC Analysis Date TOC Sample Dry Weight (mg) Method TOC	LECO1825 11/14/16 11/14/16 252.9 B&B SOP 100	5	Li B&E	ECO1825 11/14/16 11/14/16 254.7 3 SOP 1005	5		LECO1825 11/14/16 11/14/16 250.9 B&B SOP 1005		LECO1825 11/14/16 11/14/16 253.7 B&B SOP 100	5
Target Analyte	mg Carbon		Q m	ıg Carbon		Q	mg Carbon	Q	mg Carbon	Q
Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)	4.13 1.51 2.62			4.79 2.14 2.65			5.05 1.95 3.10		8.88 7.38 1.50	
	% Carbon		Q %	6 Carbon		Q	% Carbon	Q	% Carbon	Q
Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)	1.64 0.60 1.04			1.90 0.84 1.06			2.00 0.78 1.23		3.54 2.91 0.63	
B&B Laboratories Project J16222 Report 16-3589			LEED Co La % Carbon Dete Laboratory Dupli	ake Erie rmination cate Report	:					
Laboratory ID Sample ID Matrix Collection Date Received Date	LED0037 PC01R, PC02, PC03 Sediment NA 10/12/16		LED0037DUP PC01R, PC02, PC0 Sediment NA 10/12/16	3						
Analysis Batch TC Preparation Date TC Analysis Date TC Sample Dry Weight (mg) Method TC	LECO1824 11/14/16 11/14/16 252.5 B&B SOP 1005		LECO1824 11/14/16 11/14/16 250.8 B&B SOP 1005							
Analysis Batch TOC Preparation Date TOC Analysis Date TOC Sample Dry Weight (mg) Method TOC	LECO1825 11/14/16 11/14/16 252.9 B&B SOP 1005		LECO1825 11/14/16 11/14/16 251.4 B&B SOP 1005							
Target Analyte	mg Carbon	Q	mg Carbon	Q						
Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)	4.13 1.51 2.62		4.07 1.40 2.67							
	% Carbon	Q	% Carbon	Q	RPD	C	2		% Carbon MDL 2x I	MDL
Total Carbon (TC) Total Organic Carbon (TOC) Total Ingraphic Carbon (TIC)	1.64 0.60 1.04		1.62 0.55 1.07		1 7 3				0.03 0. 0.03 0. 0.03 0.	06 06 06

B&B Laboratories Project J16222 Report 16-3589		LEED Co Lake Erie Total Carbon Method Blank Report	
Laboratory ID Sample ID Matrix Collection Date Received Date Analysis Batch TC Preparation Date TC Analysis Date TC Sample Dry Weight (mg) Method TC	LC1824B NA Sediment NA LECO1824 11/14/16 11/14/16 0.25 B&B SOP 1005		
Target Analyte	mg Carbon	Q	
Total Carbon (TC)	0.00	U	
	% Carbon	Q	% Carbon MDL 3x MDL
Total Carbon (TC)	0.00	U	0.03 0.09
B&B Laboratories Project J16222 Report 16-3589		LEED Co Lake Erie Total Organic Carbon Method Blank Report	
Laboratory ID Sample ID Matrix Collection Date Received Date Analysis Batch TOC Preparation Date TOC Analysis Date TOC Sample Dry Weight (mg) Method TOC	AC1825B NA Sediment NA LECO1825 11/14/16 11/14/16 0.25 B&B SOP 1005		
Target Analyte	mg Carbon	Q	
Total Organic Carbon (TOC)	0.00	U	
	% Carbon	Q	% Carbon
Total Organic Carbon (TOC)	0.00	U	0.03 0.09

B&B Laboratories Project J16222 Report 16-3589	Sta	Indar	LEED Co. Total (rd Referen	- Lake Eri Carbon ce Materia	e al Report			
Laboratory ID Sample ID Matrix Collection Date Received Date Analysis Batch TC Preparation Date TC Analysis Date TC Sample Dry Weight (mg) Method TC	LC1824SRM NA Sediment NA LECO1824 11/14/16 11/14/16 250.4 B&B SOP 1005							
Target Analyte	mg Carbon	Q						
Total Carbon (TC)	8.05 % Carbon	Q	% Dev.	Q		Reference Valu SRM8704 % Carbon	e -59	% +5%
Total Carbon (TC)	3.22		4			3.351 ± 0.017	3.1	67 3.536
B&B Laboratories Project J16222 Report 16-3589	Star	L To Idard	EED Co otal Organ I Reference	Lake Erie ic Carbon e Material	Report			
Laboratory ID Sample ID Matrix Collection Date Received Date Analysis Batch TOC Preparation Date TOC Analysis Date TOC Sample Dry Weight (mg) Method TOC	AC1825SRM NA Sediment NA LECO1825 11/14/16 11/14/16 200.3 B&B SOP 1005							
Target Analyte	mg Carbon	Q						
Total Organic Carbon (TOC)	6.00					Reference Value SRM1941b	-5%	+5%
	% Carbon	Q	% Dev.	Q		% Carbon	2.70	
Total Organic Carbon (TOC)	2.99		0			2.99 ± 0.24	2.613	3.392

SRMs are acidified

5.5 APPENDIX E – GRAIN SIZE

		GRA	IN SIZE DAT	A RESU	LTS					
Job Number	J16222				M	aximum Particle S	Size			
Client	LEED Co.					9.5 mm				
Job Description	Environm	ental Com	posite Cor							
Core ID	LED0040; F	PC01R, PC	02, PC03			Dispersing Agen	t			
Top Depth	0					(NaPO3)6 @ 40 g/	ΊL			
Bottom Depth	0									
	D (mm)	Sieve #	% Finer		Soak T	ime in Dispersing	g Agent			
	63	2.5"	100.00			16 hrs				
	19	3/4"	100.00							
	9.5	3/8"	100.00			Dispersing Device	e			
	4.75	4	99.12		Арр	paratus A, ASTM D	-422			
	2.36	8	95.31							
	2	10	94.06		Dispersing Period					
ta	1.18	16	90.19			1 min				
)a	0.85	20	88.49							
	0.425	40	76.36							
Ze	0.3	50	68.38		% Gravel > 2 mm		5.94			
0.1	0.25	60	65.01		% Sand	0.075 - 2 mm	37.54			
	0.18	80	61.60		% Silt	0.002 - 0.075 mn	31.60			
air	0.15	100	60.12		% Clay	< 0.002 mm	24.91			
La	0.075	200	56.51							
U U	0.0443		55.52							
	0.0315		53.54							
	0.0201		51.55							
	0.0118		47.59							
	0.0084		43.62							
	0.0061		37.67							
	0.0031		29.74							
	0.0013		21.81							
% Passing #10	94.06									
% Passing #200	56.51									
% Pass 2µ	24.91									

		(GRAIN SIZE DATA R	ESULTS						
Job Number	J16222				M	aximum Particle S	Size			
Client	LEED Co.					9.5 mm				
Job Description	Environm	ental Com	posite Core							
Core ID	LED0041; I	PC04, PC05	R1, PC06R2, PC07			Dispersing Agen	t			
Top Depth	0					(NaPO3)6 @ 40 g/	′L			
Bottom Depth	0									
	D (mm)	Sieve #	% Finer		Soak 1	Time in Dispersing	g Agent			
	63	2.5"	100.00			16 hrs				
	19	3/4"	100.00							
	9.5	3/8"	100.00			Dispersing Device	e			
	4.75	4	98.80		Ар	paratus A, ASTM D)-422			
	2.36	8	90.64							
	2	10	88.99		Dispersing Period					
ta	1.18	16	86.07			1 min				
)a	0.85	20	84.92							
	0.425	40	81.56							
ZG	0.3	50	79.09		% Grave	> 2 mm	11.01			
io	0.25	60	77.63		% Sand	0.075 - 2 mm	17.54			
	0.18	80	75.04		% Silt	0.002 - 0.075 mn	45.72			
	0.15	100	73.76		% Clay	< 0.002 mm	25.73			
La	0.075	200	71.45							
U U	0.0416		72.39							
	0.0296		70.41							
	0.0190		66.44							
	0.0114		56.52							
	0.0083		47.60							
	0.0060		40.66							
	0.0030		31.73							
	0.0013		21.82							
% Passing #10	88.99									
% Passing #200	71.45									
% Pass 2µ	25.73									

		GRA	IN SIZE DAT	A RESU	LTS				
Job Number	J16222				M	aximum Particle S	Size		
Client	LEED Co.					0.85 mm			
Job Description	Environm	ental Com	posite Cor						
Core ID	LED0042; F	PC09, PC10)			Dispersing Agen	t		
Top Depth	0					(NaPO3)6 @ 40 g,	/L		
Bottom Depth	0								
	D (mm)	Sieve #	% Finer		Soak T	ime in Dispersin	g Agent		
	63	2.5"	100.00			16 hrs			
	19	3/4"	100.00						
	9.5	3/8"	100.00			Dispersing Devic	e		
	4.75	4	100.00		Арр	paratus A, ASTM [0-422		
	2.36	8	100.00						
	2	10	100.00		Dispersing Period				
ta	1.18	16	100.00			1 min			
)a	0.85	20	100.00						
	0.425	40	97.83						
ZG	0.3	50	97.21		% Grave	> 2 mm	0.00		
i.i.	0.25	60	96.85		% Sand	0.075 - 2 mm	5.92		
	0.18	80	96.15		% Silt	0.002 - 0.075 mn	79.84		
	0.15	100	95.73		% Clay	< 0.002 mm	14.24		
lice	0.075	200	94.08						
U U	0.0383		89.19						
	0.0276		85.23						
	0.0186		71.35						
	0.0118		47.57						
	0.0087		33.69						
	0.0063		25.77						
	0.0032		16.85						
	0.0014		12.88						
% Passing #10	100.00								
% Passing #200	94.08								
% Pass 2µ	14.24								

		GRA	IN SIZE DAT	TA RESU	LTS				
Job Number	J16222				M	aximum Particle S	Size		
Client	LEED Co.					0.85 mm			
Job Description	Environm	ental Com	posite Cor						
Core ID	LED0046; E	BC01, BC02	2, BC03			Dispersing Agen	t		
Top Depth	0					(NaPO3)6 @ 40 g,	/L		
Bottom Depth	0								
	D (mm)	Sieve #	% Finer		Soak T	ime in Dispersin	g Agent		
	63	2.5"	100.00			16 hrs			
	19	3/4"	100.00						
	9.5	3/8"	100.00			Dispersing Devic	e		
	4.75	4	100.00		Арр	paratus A, ASTM [)-422		
	2.36	8	100.00						
	2	10	100.00		Dispersing Period				
ta	1.18	16	100.00			1 min			
)a	0.85	20	100.00						
	0.425	40	99.62						
S S	0.3	50	98.98		% Grave	> 2 mm	0.00		
io	0.25	60	98.64		% Sand	0.075 - 2 mm	1.99		
	0.18	80	98.35		% Silt	0.002 - 0.075 mn	60.76		
	0.15	100	98.23		% Clay	< 0.002 mm	37.25		
La	0.075	200	98.01						
U U	0.0375		93.10						
	0.0268		91.12						
	0.0175		85.18						
	0.0105		75.27						
	0.0077		67.35						
	0.0057		57.45						
	0.0029		45.56						
	0.0013		30.70						
% Passing #10	100.00								
% Passing #200	98.01								
% Pass 2µ	37.25								

5.6 APPENDIX F – TRACE METALS

TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

						Processing		
Sponsor ID	AE Sample ID	Collection Date	Location	Sample Type	Matrix	(Note 3)	Method	Anal. Date
	Field Samples (Notes 1,2)							
	Uncensored (raw) sediment trace metals data							
LED0043	XX-3122	Not Applicable	PC01R, PC02, PC03	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0044	XX-3123	Not Applicable	PC04, PC05R1, PC06R2, PC07	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0045	XX-3124	Not Applicable	PC09, PC10	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0046	XX-3125	Not Applicable	BC01, BC02, BC03	Composite Sed. Core	FW Sediment	Total Rec.	Note 4	Note 5
	Sediment trace metals data censored to the reporting limit							
LED0043	XX-3122	Not Applicable	PC01R, PC02, PC03	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0044	XX-3123	Not Applicable	PC04, PC05R1, PC06R2, PC07	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0045	XX-3124	Not Applicable	PC09, PC10	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
LED0046	XX-3125	Not Applicable	BC01, BC02, BC03	Composite Sed. Core	FW Sediment	Total Rec.	Note 4	Note 5

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

12/18/2016 Page 57

TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

		Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.
Sponsor ID	AE Sample ID	Ag (ppm)	Al (ppm)	As (ppm)	B (ppm)	Ba (ppm)	Be (ppm)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (ppm)	Mn (ppm)	Mo (ppm)
	Field Samples (Notes 1,2)													
	Uncensored (raw) sediment trace metals data													
LED0043	XX-3122	0.08	11650	13.1	10.8	116	0.72	0.17	11.9	18.6	22.6	26100	567	4.12
LED0044	XX-3123	0.10	11800	13.9	11.1	125	0.73	0.24	12.6	19.0	26.8	29000	423	4.12
LED0045	XX-3124	0.15	11500	14.6	10.8	75.4	0.60	0.51	12.6	26.1	42.4	33000	456	4.12
LED0046	XX-3125	0.38	20400	8.21	12.5	129	1.18	1.94	13.9	53.1	47.7	34000	567	1.78
	Sediment trace metals data censored to the reporting limit													
LED0043	XX-3122	< 0.1	11650	13.1	10.8	116	0.72	0.17	11.9	18.6	22.6	26100	567	4.12
LED0044 LED0045	XX-3123 XX-3124 XX-3126	< 0.1	11800 11500	13.9 14.6	11.1 10.8	125 75.4	0.73	0.24	12.6 12.6	19.0 26.1	26.8 42.4	29000 33000	423 456	4.12
LEDUU40	AV-2120	0.30	20400	0.21	12.0	127	1.10	1.74	13.4	33.1	47.7	34000	007	1.70

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

12/18/2016 Page 58

TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

		Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Percent
Sponsor ID	AE Sample ID	Ni (ppm)	Pb (ppm)	Sb (ppm)	Se (ppm)	Sn (ppm)	V (ppm)	Zn (ppm)	Hg (ppm)	Ca (ppm)	K (ppm)	Mg (ppm)	Na (ppm)	Moisture
	Field Samples (Notes 1,2)													
	Uncensored (raw) sediment trace metals data													
LED0043	XX-3122	30.3	11.8	0.33	0.51	0.56	24.0	72.7	0.0138	28500	2580	10600	133	19.7
LED0044	XX-3123	30.2	16.0	0.38	0.51	1.22	23.6	111	0.0173	40800	2520	12900	144	17.9
LED0045	XX-3124	34.1	24.0	0.71	0.52	2.43	22.3	116	0.0354	32400	2270	12800	142	22.6
LED0046	XX-3125	51.4	44.9	0.61	1.55	2.85	50.7	204	0.335	14300	4250	13500	174	78.2
	Sediment trace metals data censored to the reporting limit													
LED0043	XX-3122	30.3	11.8	< 0.5	< 2	0.56	24.0	72.7	0.0138	28500	2580	10600	< 2000	
LED0044 LED0045	XX-3123 XX-3124	30.2 34.1	16.0 24.0	< 0.5 0.71	< 2	1.22 2.43	23.6	111 116	0.0173	40800	2520 2270	12900 12800	< 2000 < 2000	
LED0046	XX-3125	51.4	44.9	0.61	< 2	2.85	50.7	204	0.335	14300	4250	13500	< 2000	

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

12/18/2016 Page 59
TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

						Processing		
Sponsor ID	AE Sample ID	Collection Date	Location	Sample Type	Matrix	(Note 3)	Method	Anal. Date
			Laboratory Quality Ass	urance Samples				
	Reporting Limit Sediment (ppm							
	dry wt.)						Note 4	Note 5
	Reference Material (Note 3)							
	MESS3-1		Albion Env.	Reference Material	Marine Sed.	Total Rec.	Note 4	Note 5
	Certified Value							
	Percent Recovery (% R)							
	Historical % R							
	Digestion Duplicates (Note 6)							
LED0043	XX-3122	Not Applicable	PC01R, PC02, PC03	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
	XX-3122-DUP	Not Applicable	PC01R, PC02, PC03	Digestion Duplicate	FW Sediment	Total Rec.	Note 4	Note 5
	Relative Percent Difference (RPD)							
	Matrix Spike (Note 7)							
LED0045	XX-3124	Not Applicable	PC09, PC10	Composite Sed. Grabs	FW Sediment	Total Rec.	Note 4	Note 5
	XX-3124-SPK	Not Applicable	PC09, PC10	Matrix Spike	FW Sediment	Total Rec.	Note 4	Note 5
	Expected Increase							
	% R							
	Blank Spikes (Note 7)							
	LCS-1						Note 4	Note 5
	Expected Increase							
	% R							
	Method Blank							
	MBLK-1 (Raw)						Note 4	Note 5
	MBLK-1 (Censored)						Note 4	Note 5

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

		Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.
Sponsor ID	AE Sample ID	Ag (ppm)	Al (ppm)	As (ppm)	B (ppm)	Ba (ppm)	Be (ppm)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (ppm)	Mn (ppm)	Mo (ppm)
	Reporting Limit Sediment (ppm													
	dry wt.)	0.1	500	2	5	0.5	0.5	0.1	2	1	0.3	1000	0.5	1
	Reference Material (Note 3)													
	MESS3-1	0.18	13600	18.6	26.8	330	0.92	0.24	11.9	29.0	31.7	31300	329	2.37
	Certified Value	0.18	85900	21.2	NCV	340	2.30	0.24	14.4	105	33.9	43,400	324	2.78
	Percent Recovery (% R)	102	16	88		97	40	100	83	28	94	72	102	85
	Historical % R	111	23	88		98	48	104	90	32	102	83	96	97
-														
	Digestion Duplicates (Note 6)													
LED0043	XX-3122	0.08	11650	13.1	10.8	116	0.72	0.173	11.9	18.6	22.6	26100	567	4.12
-	XX-3122-DUP	0.09	12580	12.9	11.3	115	0.65	0.173	11.6	18.8	23.8	27600	620	4.26
-	Relative Percent Difference													
	(RPD)	3.7	7.7	1.5	4.5	0.9	9.2	0.0	2.6	1.1	5.2	5.6	8.9	3.3
	Matrix Spike (Note 7)													
LED0045	XX-3124	0.15	11500	14.6	10.8	75.4	0.60	0.510	12.6	26.1	42.4	33000	456	4.12
	XX-3124-SPK	2.55	11100	20.4	9.53	293	1.62	5.69	32.5	78.6	85.3	32400	971	4.18
-	Expected Increase	2.50	Not Spiked	5.00	Not Spiked	200	1.00	5.00	20.0	50.0	50.0	Not Spiked	500	Not Spiked
-	% R	96		116		109	102	104	100	105	86		103	
		1												
	Blank Spikes (Note 7)													
	LCS-1	0.49	0.23	1.03	0.01	41.1	0.21	1.04	3.98	10.2	10.2	0.46	95.4	0.01
	Expected Increase	0.50	Not Spiked	1.00	Not Spiked	40.0	0.20	1.00	4.00	10.0	10.0	Not Spiked	100	Not Spiked
	% R	98		103		103	103	104	100	102	102		95	
	Method Blank													
	MBLK-1 (Raw)	0.00	0.29	0.00	0.02	0.00	0.00	0.001	0.00	0.00	0.01	0.04	0.031	0.02
	MBLK-1 (Censored)) < 0.1	< 500	< 2	< 5	< 0.5	< 0.5	< 0.1	< 2	< 1	< 0.3	< 1000	< 0.5	< 1
		1												

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

12/18/2016 Page 61

TDI-BI/ B Laboratories LEED County Lake Erie Study (Job No. J16222 SDG NA) Final Sediment Total Recoverable Trace Metals & Total Mercury Data for Samples Received 21 Sept. & 12 October 2016 (Report X1218-9457-001)

		Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Dry Wt.	Percent				
Sponsor ID	AE Sample ID	Ni (ppm)	Pb (ppm)	Sb (ppm)	Se (ppm)	Sn (ppm)	V (ppm)	Zn (ppm)	Hg (ppm)	Ca (ppm)	K (ppm)	Mg (ppm)	Na (ppm)	Moisture
	Reporting Limit Sediment (ppm													
	dry wt.)	1	0.1	0.5	2	0.2	2	1	0.002	4000	2000	4000	2000	
	Reference Material (Note 3)													
	MESS3-1	36.0	16.6	0.70	0.90	0.62	66.8	142	0.097	14400	4250	13700	12000	
	Certified Value	46.9	21.1	1.02	0.72	NCV	243	159	0.091	14700	26000	16000	16000	
	Percent Recovery (% R)	77	79	68	125		27	89	107	98	16	86	75	
	Historical % R	84	80	71	93		33	90	102	96	21	89	79	
	Digestion Duplicates (Note 6)													
LED0043	XX-3122	30.3	11.8	0.33	0.51	0.56	24.0	72.7	0.0138	28500	2580	10600	133	
	XX-3122-DUP	30.0	11.7	0.36	0.44	0.54	25.9	78.1	0.0143	31700	2750	11400	134	
	Relative Percent Difference													
	(RPD)	1.0	0.9	7.3	13.3	2.0	7.6	7.2	3.6	10.6	6.4	7.3	0.7	
	Matrix Spike (Note 7)													
LED0045	XX-3124	34.1	24.0	0.71	0.52	2.43	22.3	116	0.0354	32400	2270	12800	142	
	XX-3124-SPK	135	69.1	5.12	5.59	2.10	72.1	309	1.83	32500	2130	12600	128	
	Expected Increase	100	50.0	5.00	5.00	Not Spiked	50.0	200	1.89	Not Spiked	Not Spiked	Not Spiked	Not Spiked	
	% R	101	90	88	101		100	97	95					
	Blank Spikes (Note 7)													
	LCS-1	20.5	9.72	0.99	1.13	0.00	8.95	41.3	NA	0.98	0.22	0.66	0.52	
	Expected Increase	20.0	10.0	1.00	1.00	Not Spiked	10.0	40.0		Not Spiked	Not Spiked	Not Spiked	Not Spiked	
	% R	103	97	99	113		90	103						
	Method Blank	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.000	0.40	0.07	0.40	0.50	
	MBLK-1 (Raw)	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.000	0.69	0.26	0.60	0.52	
	MBLK-1 (Censored)	< 1	< 0.1	< 0.5	< 2	< 0.2	< 2	< 1	< 0.002	< 4000	< 2000	< 4000	< 2000	

APPROVED:

Dr. P.N. Boothe, Laboratory Manager

Notes:

1. Metals concentration units are total recoverable metals in micrograms per gram (parts per million) on a dry weight basis. This data report applies only to the samples listed and the report shall not be reproduced except in full. Mercury (Hg) are total sediment Hg in ppm. To provide the maximum amount of information to the sponsor for data interpretation, sediment metal levels are reported both raw (uncensored) and censored to the reporting limit. Data censored to the reporting limit are most commonly reported to regulatory agencies.

2. Sediment samples were received in good condition from the sponsor (TDI-BI/B&B Laboratories, 14391B South Dowling, College Station, TX 77845) and kept refrigerated until further processing. Sediment samples were then homogenized and freeze-dried to a constant weight in the original bottles. The percent moisture was determined to allow conversion between wet (as received) and the dry weight concentrations reported here. The dried sediment samples were then ground to a fine powder. For EPA method 200.8 approximately 0.2 g of the dried and powdered sediment samples were subjected to a strong acid leaching digestion at 95 deg. C. for six hours. The acid leachate was then brought to approximately 20 ml final volume with deionized water. The leachate (digestate) was then diluted further as needed to keep the solution concentration within the calibration range of the ICP-MS instrument and to adjust as needed the acid strength for analysis.

3. The heated, strong acid leach digestion used for this study is NOT a total digestion quantifying all of a given element present in the sediment matrix. The percentage of metal leached into solution for analysis varies by element. For example, for the more refractory metals (e.g. Al, Cr, V) only a relatively small percentage is leached into solution for analysis. For many other elements (including many pollutant metals) that are largely adsorbed onto the sediment particles, a much higher percentage is leached into solution for analysis. A marine sediment reference material (MESS-3) was used to estimate the percentage of each element leached into solution for analysis. The percentage released is compared to a historical percentage that is typically observed for such a heated strong acid leach. The leaching efficiency observed between the observed and historical percentage leached was generally in agreement for this sample set. The leaching efficiency can be used to estimate the total metal present in the sediment samples.

4. Metals concentrations (except Hg) were determined in the sediment leachate according to EPA method 200.8 (ICP-MS). All metals were determined by standard mode ICP-MS except that calcium (Ca), chromium (Cr), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), potassium (K), selenium (Se), and vanadium (V) were determined by method 200.8 modified for dynamic reaction cell (DRC)-ICP-MS using ammonia as the cell gas. Arsenic (As) was determined by DRC-ICP-MS using oxygen as the cell gas DRC-ICP-MS are interference control technologies that minimize the overestimation of aqueous trace metals levels associated with isobaric interferences that can occur with standard mode ICP-MS. Isobaric interferences are a significant concern especially for many sediment matrices because of elevated concentrations of Ca, Mg, Na, Cl, etc. Total sediment Hg was determined using EPA method 7473. In this method, the dried and powdered sediment samples are analyzed directly by thermal decomposition, amalgamation and atomic absorption spectrophotometry.

5. Sediment leachates were analyzed by EPA 200.8 (see note 4) on 12-15-2016. Dry, homogenized sediment samples were analyzed for Hg (see note 4) on 12-13-2016.

6. For digestion (leach) duplicates, different aliquots of freeze-dried sediments are digested and analyzed individually as separate samples. An RPD of < 20% is expected for digestion duplicates.

7. The trace metals spike is added to the spiked samples prior to the leaching procedure and carried through the entire process in the same manner as the other unknown sediment samples. Major elements in high concentrations (AI,Ca,K,Mg,Fe) and a few rarely requested elements (B,Mo,Sn) were not spiked. All matrix spike percent recoveries (% R) were acceptable.