Photoluminescence-imaging-based Evaluation of Non-uniform CdTe Degradation

Steve Johnston¹, David Albin¹, Peter Hacke¹, Steven P. Harvey¹, Helio Moutinho¹, Chun-Sheng Jiang¹, Chunxiao Xiao¹, Marco Nardone², Mowafak Al-Jassim¹, and Wyatt K. Metzger¹

¹National Renewable Energy Laboratory, Golden, CO, 80401, U.S.A.
²Bowling Green State University, Bowling Green, OH, U.S.A.

Study module degradation mechanisms by understanding the semiconductor device at the microscopic level, such as kinetics of impurities, changes in materials, and damage to device architecture.

Imaging for photovoltaics

- CdTe Module PL imaging
 - scan laser beam for excitation
 - Cepida Silver 660M FLIR SC5600-M
- PL imaging
 - Silicon charge-coupled device (CCD) 16-bit camera with 1024 x 1024 pixels (13um pixel pitch), cooled to ~60°C
 - InSb 14-bit lock-in camera with 840 x 512 pixels (15um pixel pitch), cooled to ~80K
- LIT imaging

Cepida Silver 660M FLIR SC5600-M

PL imaging on cored regions from degraded CdTe mini-module

- PL -- raster pattern, 532 nm laser diode, ~1 mm spot size, ~1-Sun intensity excitation.
- EL --~3 J/cm² current excitation.
- DLIT -- forward bias, ~3 J/cm² current excitation.

Before stress

After stress

Stress (light/heat)

- Cut out samples from regions of interest.
- Avoid shunt areas with any grown-in defects.
- Based on PL image intensity: Least degraded, Mid-degraded, Most degraded

Cu profiles of stressed CdTe cores using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

Reduced PL intensity correlates to more Cu at the front junction.

Kelvin Probe Force Microscopy (KPFM) potential imaging on cross-sections of stressed CdTe cores

Increased shallow acceptors after degradation leads to narrower space charge region.

Ion transport (Cu-ions) to front junction [1] leads to both:
- shallow centers for increased doping, and
- deep defect generation
 - increased carrier recombination
 - reduced cell performance.

In [1], TRPL was inconclusive, but here, PL intensity shows correlation to degradation.

Core selected areas from degraded modules

- Use diamond-based coring bit and liquid-cooled drill to cut through Si cell or thin-film and glass.
- Cut sample for extraction
- On thin-film modules, glue posts to cored glass, or core completely through the module and dissolve encapsulation.
- After the glue is set, use a wrench to shear the sample from the module.
- Cored samples from ~12 to 25 mm diameter
- Soak in acetone to dissolve Super Glue and remove areas. Or, use a short tool that fits in measurement tools and does not need to be removed.

AFM

Increased shallow acceptors after degradation leads to narrower space charge region.

TCO and junction region

In [1], TRPL was inconclusive, but here, PL intensity shows correlation to degradation.