

Bioenergy Technologies Office 2017 Program Management Review

Biochemical Conversion

Suzanne Lantz Arlington, Virginia

July 13, 2017

BIOCHEMICAL CONVERSION REVIEW PANEL

NAME	AFFILIATION	
Suzanne Lantz*	DuPont	
Yoram Barak	BASF	
Joseph Bozell	University of Tennessee	
Jamie Ryding	Corvia Biotechnology Group	
Steve Van Dien	Genomatica	

Review Panel Approach

ENERGY Energy Efficiency & Renewable Energy

- 45 minute daily discussions of the presentations during the review focusing on strengths and weaknesses of technical presentations, and project management
- After the review, each panelist documented specific examples of impact, technical strength, significance to BETO, recommendations, etc., and these were included in the final review report
- There was considerable agreement among the panel and when exceptions occurred, they were noted in the report

- Average scores ranged from 5.35 to 9.20, with a median of 8.05.
- Top Performing Projects:
 - 1. NREL Analytical Methods Development and Support
 - 2. NREL Biochemical Process Modeling and Simulation
 - 3. NREL Renewable Carbon Fibers Consortium
 - 4. NREL Biochemical Platform Analysis Project
 - 5. NREL Lignin Utilization

	SunSetting	Ongoing	New
Average Scores	7.57	8.10	7.74

Overall Impressions: Impact

- Clearly defined goal for BC program: \$3/GGE by 2022
 - Recognized need for value-added co-products
- Strengths:
 - Core enabling projects (Analytical Methods, Modeling etc.)
 - Organization into consortia structure
 - Renewed focus on chemical bio-products
 - Lignin research
 - Diverse approaches to meet 2022 goal
 - Focus on Titer/Rate/Yield metrics
- Weaknesses
 - Fungal strain projects could benefit from consortia approach
 - Some competitive projects with unclear goals/scope (Kiverdi, JCVI)

Overall Impressions: Innovation

- **ENERGY** Energy Efficiency & Renewable Energy
- Lignin as a substrate for co-products is most innovative and highest impact portfolio area
 - Whole community could benefit from standardized, characterized starting materials
- Renewable Carbon Fiber Consortium
 - Relevant and impactful target
 - Innovative and exciting work
- Would benefit from a better path to connect LDRD to BETO core

Overall Impressions: Synergies

- Subject-centered consortia are a technological strength
 - Avoids silos and works on common problems
 - Management challenges and strengths
- Could better utilize core NL skills: process modelling at NREL, SCADA at PNNL, analytical methods at NREL
 - Need to better integrate across labs and disseminate results
- Scaling facilities are a resource/strength
 - Support scale-up and pre-commercial development
 - Would benefit users to offer a coordinated package of resources between ABPDU and IBRF
- Fungal strain development coordination should be improved
 - Shared expertise

Overall Impressions: Focus

- Technology Gaps
 - Reactor and aeration design
- Standard Materials
 - NLs or CROs could provide generally applicable material and software in an open source manner
 - E.g. NREL Acid-pretreated Corn Stover or NREL Analytical Methods
 Development Laboratory Analytical Procedures

U.S. DEPARTMENT OF

ENERG

Energy Efficiency &

Renewable Energy

- Biorefinery Scenario
 - Focus on making chemical products in parallel to fuel is critical
 - Don't down-select to a single chemical (like adipic acid) too quickly
- Technology Communication
 - Better dissemination of information beyond journal articles

Overall Impressions: Commercialization

- Strengths:
 - Lygos
 - Developed both an end product, malonic acid, in the DOE top 30 as well as a rapid screening method with potentially greater applicability
 - Utilized ABPDU and IBRF to help scale
 - ABPDU
 - One stop shop for bioprocess research
 - One partner has commercialized and three are in pre-commercial prototyping
 - Texas A&M Synthetic Microorganisms to Enable Lignin Conversion
 - Integrated process that has attracted potential licensees
- Weaknesses
 - TEA not uniformly applied or communicated
 - Need to better quantify commercial metrics, track progress, and communicate state of technology relative to metrics

Increase project management rigor

- More consistent use of TEA
- Monitor overcommitted project leadership
- Alternative evaluation procedures for core operations teams at NLs (i.e. analytics, pilot plant, modeling, etc.)
- Better explain multiple FOAs represented in Peer Review

Continue to support consortia organization in specific technology areas

- Separations, Renewable Carbon Fibers, Agile BioFoundry are good models for streamlining and coordinating R&D in certain areas
- New consortia in areas such as fungal strain development and lignin depolymerization

Encourage use of industrial advisory boards and partnerships

 Consortia industrial advisory boards (IABs) have a noticeable impact on consortia projects and should be more broadly encouraged