

Bioenergy Technologies Office 2017 Program Management Review

Advanced Algal Systems

Eric Jarvis

Arlington, Virginia

July 13, 2017

NAME	AFFILIATION		
Eric Jarvis*	Independent Consultant		
Toby Ahrens	U.S. Department of Agriculture, National Institute of Food and Agriculture		
Louis Brown	Synthetic Genomics		
Bill Crump	Leidos		
Sarah Smith	A.E. Allen Laboratory, Scripps Institution of Oceanography		
Rebecca White	Qualitas Health		

Review Panel Approach

- 39 projects presented over the course of four days
- Discussions of goals, project management, accomplishments, relevance to BETO goals, future work plans
- Mix of sun-setting (7), ongoing (24), and new (8) projects
- Q&A from panel and audience
- No confidential information presented
- Following review, panel members made very detailed evaluations, received PI responses

Project Scores

Average Weighted Scores ranged from 3.75 to 9.00, with a median of 7.50

	SunSetting	Ongoing	New
Average Scores	7.24	7.30	7.67

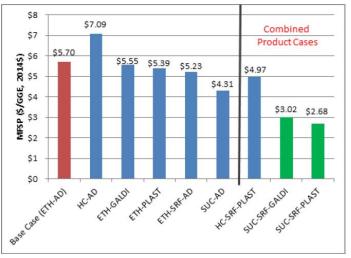
- **Top 5** performing projects:
 - Global Algae Innovations, ABY Phase 2
 - Arizona State University, ATP3
 - NREL, Algae Technology Educational Consortium
 - Global Algae Innovations, TABB
 - NREL, Algae Biofuels TEA

<u>#1 & #4</u>: Global Algae Innovations, Inc.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- GAI presented on sunsetting (ABY Phase 2) and ongoing (TABB) projects
- Impressive progress
 - Improved strains, cultivation methods
 - Novel harvest/dewatering technology
 - Integrated process at large scale demonstrated
 - Research tightly linked to cost models
 - Claims of a modeled
 \$3.33/GGE MFSP


<u>#2 & #5</u>: Bedrock Projects

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Arizona State University, ATP3

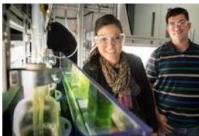
- Algae Testbed Public-Private Partnership
- Resource for entire algal community
- Long-term, multi-regional growth data to establish state-of-technology
- Methods development, standardization, harmonization

NREL, Algae Biofuels TEA

- Supports industry and research communities with in-depth techno-economic analyses
- Guides research priorities for BETO
- Critical evaluation of process and coproduct scenarios

Other bedrock projects include NREL's Algal Biomass Valorization and PNNL's Microalgae Analysis projects

<u>#3</u>: Educational Consortium


U.S. DEPARTMENT OF ENERGY RE

Energy Efficiency & Renewable Energy

- Algae Technology Educational Consortium
- Collaboration between NREL and USM
- Goal to meet expected need for skilled algal technicians
- Working to establish coursework and degree programs through academic partners

Overall Impressions: Impact

- Excellent research productivity across the portfolio
- Significant advances enabled by BETO funding
 - Private sector cannot yet substitute
- 2015 Peer Review findings being addressed
 - Emphasis on co-products, saline strains, productivity targets
- Current SOT solidified (ATP3, NREL TEA)
 - Advances still required across value chain
 - Further productivity improvements key
 - Co-products essential for economic viability
- Several projects poised for impact in co-products
 - NREL ABV, ABC; Algenol; CSM-PACE
- Industry-led deployment on path to BETO's goals

Overall Impressions: Innovation

- BETO's FOA process has attracted highly innovative approaches
- Five areas stood out:
- 1) Strain improvement
 - Innovative tools, strains, datasets coming online
 - Cas9, non-GMO engineered strains
 - Rapid screening methods
 - Classical breeding (LANL)
- 2) Carbon capture
 - High alkalinity cultivation (U. Toledo)
 - Carbonic anhydrase (PNNL)
 - Large-scale absorber unit (GAI)

Photo: R. Sayre, LANL

Overall Impressions: Innovation, continued

- 3) Crop monitoring and protection
 - Addressing yield losses due to predators and pathogens
 - Chemical signatures of impending crashes (UCSD)
 - Pond microbiomes, selecting probiotics (LLNL)
- 4) Algal polyculture using impaired water
 - High productivity plus water remediation and nutrient recycle
 - Algae Turf Scrubber (SNL)
 - Wastewater systems (Cal Poly, MicroBio)
- 5) Direct production of chemicals/fuel intermediates
 - Cyanobacterial production in PBRs
 - Ethyl laurate (ASU) or ethylene (NREL)

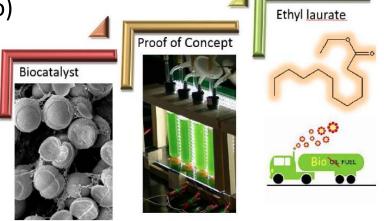


Figure: W. Vermaas, ASU

Photo: R. Davis, SNL

Overall Impressions: Gaps/Focus

- Overall no notable gaps well balanced portfolio
 - Broad coverage of entire process chain, various TRLs
 - Excellent tie-in between TEA/LCA and BETO decision making
- Consistent theme was lack of interaction between researchers and end users
 - Fuel intermediate refiners, co-product industries
- Relatively little work on harvest/dewatering
- Co-products of increasing importance
 - Little consensus on best co-products to pursue (value vs. market size)
 - Assumed vs. demonstrated value (*e.g.*, feeding trials, co-polymer testing)
- Regulatory issues
 - GMO deployment, GMP requirements

- Overall excellent synergies between projects
 - Consortia are models of inter-laboratory cooperation (*e.g.*, DISCOVR, ATP3, NREL ABP)
 - Little duplication of effort, some redundancy beneficial
- Some opportunities for additional synergy noted
 - Interactions between national labs and industry (*e.g.*, quality *vs*. value of fuel intermediates)
 - Methods standardization and units reported
 - Competing processing pathways (*e.g.*, ALU/CAP vs. HTL)
 - Projects integrating herbaceous feedstocks (INL, ASU) should interact with cellulosic biomass industry

1) Productivity improvements still paramount

- Continue research on tools, strains, carbon uptake, product/co-product yields, cultivation practices, crash resistance, etc.
- Continue improvement of realistic lab-scale testing and iteration between lab and field; larger, longer-term outdoor demonstrations
- Continue funding both incremental improvements and potentially transformational concepts
- Maintain critical mass and varied approaches

Energy Efficiency & Renewable Energy

2) Foster connections with industry

- Researchers need buy-in from real-world algae producers on new concepts, modeling assumptions
- Market assessments are needed for evaluation of potential co-products
- Researchers and industry should work together toward consensus on products best suited to algal systems
- Buy-in from end users of fuel/chemical products is needed (including cost penalties for quality issues)
- Value of algae-derived co-products must be demonstrated
- Mechanisms needed to leverage data confined within companies (including lessons learned)

Energy Efficiency & Renewable Energy

- 3) Encourage agronomic viewpoint
 - Agronomic approaches to crop improvement and integrated pest management are needed
 - Collaboration with trained agronomists and the USDA should be encouraged
 - Long-term field testing at scale required for meaningful results
 - Associated regulatory issues need to be addressed (GMO deployment and GMP protocols for some co-products)