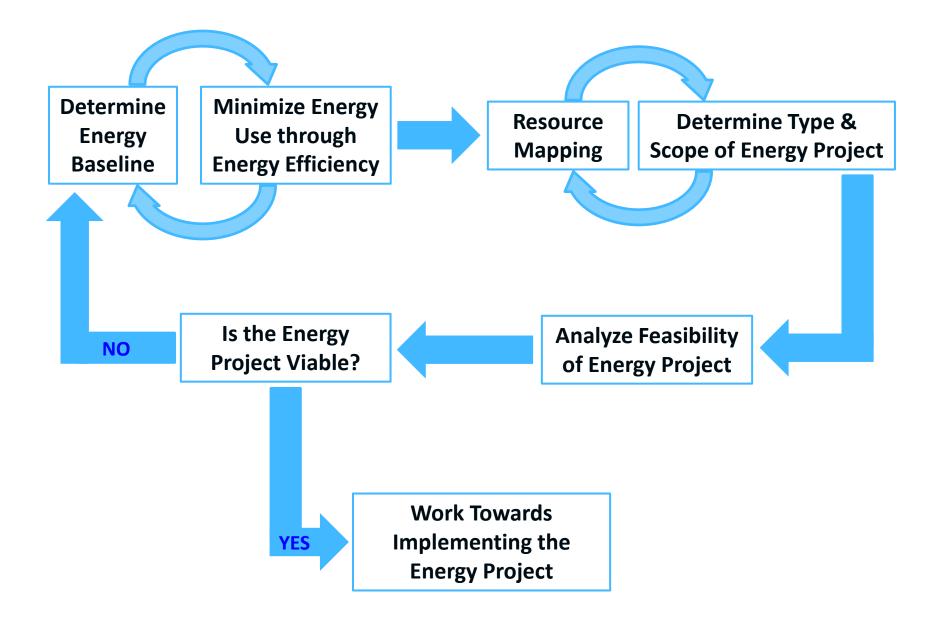
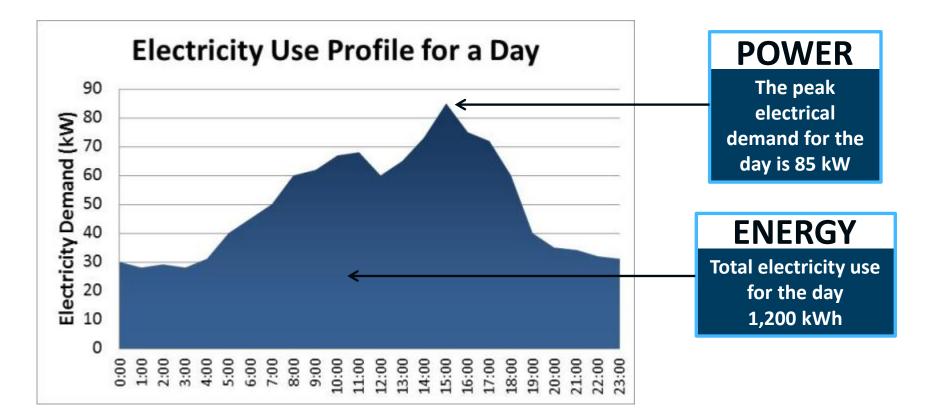


Energy System Sizing

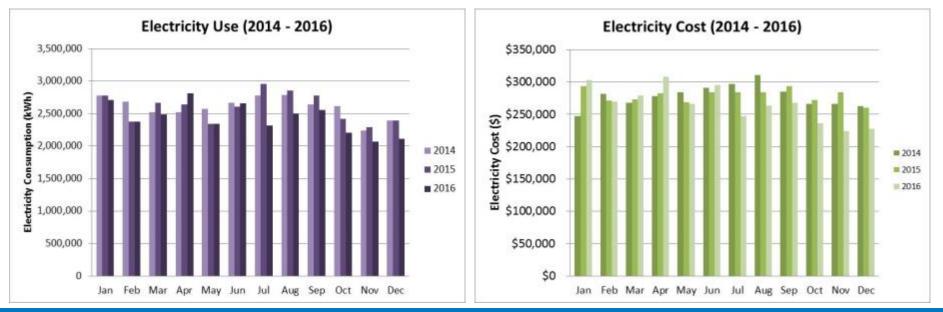
June 28th, 2017 Jimmy Salasovich, NREL


NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

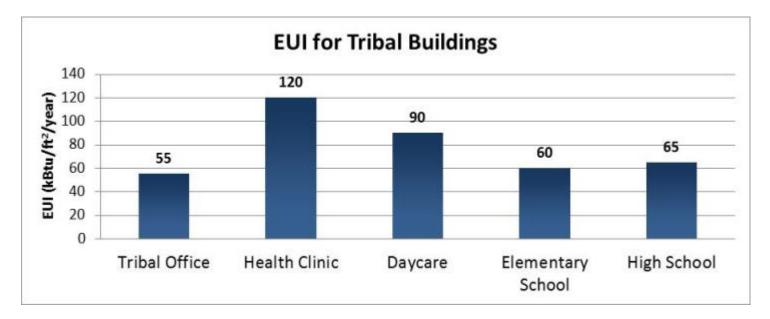
Components of Energy System Sizing


- Determine energy baseline
- Minimize energy use through energy efficiency
- Resource mapping
- Determine the type & scope of the energy project
- Analyze the feasibility of the energy project
- Work towards implementing the energy project

Typical Workflow of Energy System Sizing


Energy Baseline: Power vs. Energy

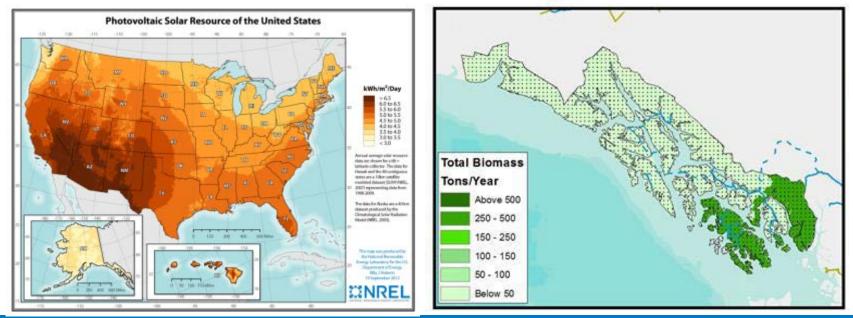
- Homes and smaller buildings typically an electricity rate with only an energy charge
- Larger buildings and sites could have an electricity rate with both an energy charge and a demand charge


Energy Baseline: Collect Energy Data

- Consider all energy uses
 - Electricity, natural gas, propane, diesel, etc.
- Collect energy use and cost data
 - Data can be for an individual building or an entire site
 - Collect monthly data for multiple years
- Analyze utility rate structure (e.g., \$/kWh, \$/therm, etc.)

Energy Baseline: Energy Use Intensity

- Energy Use Intensity (EUI) is the energy use of a building divided by the square footage
 - Typical units are kBtu/ft²/year or kWh/ft²/year
- The EUI allows for the comparison of energy use across a portfolio of buildings and to standard building types
 - Buildings with a high EUI can be targeted for implementing energy efficiency measures (EEMs)


Minimize Energy Use

- Implement energy efficiency projects first
 - Energy efficiency is typically more cost effective than renewable energy
 - Implementing energy efficiency measures (EEMs) reduces energy use, which impacts energy system sizing
- Typical EEMs include:
 - Heating, ventilating, and air-conditioning (HVAC)
 - Lighting & plug loads
 - Building envelope
- Building energy audits are good way to identify EEMs

Resource Mapping

- Analyzing resource maps is a good first step at determining what energy technologies might be most feasible at a given site
- U.S. resource maps can be found on the internet
 - Wind, solar, biomass, geothermal maps can be found at: <u>http://www.nrel.gov/gis/</u>
- More refined resource maps for a specific location can be generated by Geographic Information System (GIS) teams

NATIONAL RENEWABLE ENERGY LABORATORY

Determining the Type & Scope of Energy Projects

- Use all of the information gathered thus far
 - Energy baseline data
 - This data is helpful in determining a range of sizes for potential energy projects
 - This data is also be helpful in determining if there is a building or group of buildings well suited for a particular energy technology
 - Minimize energy use through energy efficiency
 - Tracking the energy use after implementing energy efficiency measures is helpful in right-sizing energy systems
 - Resource mapping
 - Resource maps are helpful in choosing appropriate energy technologies by location based on the resource available

Google Earth is a Useful Tool During the Scoping Phase

- Determine areas available
- Determine distance to nearest substation
- Google Earth can also be used during the Analysis Phase

- Choose energy technologies that match the way energy is being used
 - For example, a biomass boiler might work well for a cold climate housing complex but might not in a warm climate office building
- Size the energy system to meet the energy load

 Can size the system based on current energy load
 Can also be sized to meet future energy load
- Start with U.S. resource maps and consider more refined resource maps if needed

Analyze the Feasibility of an Energy Project

- Define what constitutes a viable project
 - Typically the viability of a project is based on the financial parameters (e.g., simple payback, Net Present Value, etc.)
 - Viability can also be based on a site's goals (e.g., carbon reduction)
- Choose the proper tools to analyzed a project
 - Technical analysis
 - Financial analysis
- Report the findings
 - It is important to report on energy projects that are both feasible and not currently feasible
 - Report on when I project could become feasible (e.g., report at what electricity rate that a Photovoltaic project becomes feasible)

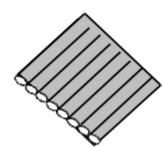
Electrical Resource Assessment

Solar PV

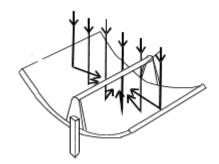
- PV Watts
- SAM
- HOMER Energy


Wind

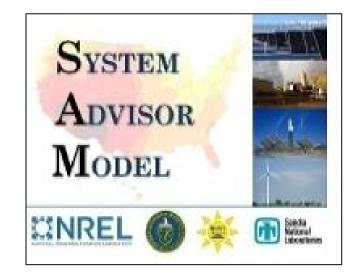
- HOMER Energy
 - SAM

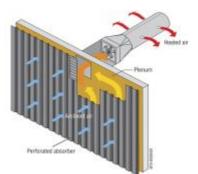

NREL's PVWatts® Calculator

Estimates the energy production and cost of energy of grid-connected photovoltaic (PV) energy systems throughout the world. It allows homeowners, small building owners, installers and manufacturers to easily develop estimates of the performance of potential PV installations.



Thermal Resource Assessment


Solar Hot Water


- SAM
- RETscreen

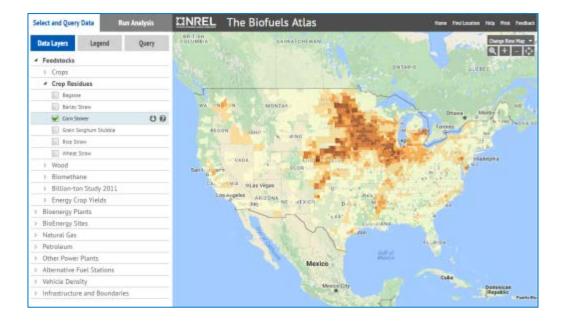
Concentrating Solar

• SAM

Solar Ventilation Preheat

• RETscreen

Thermal Resource Assessment


Biomass

- SAM
- RETscreen

Biomass Resource

 BioEnergy Atlas -<u>https://maps.nrel.gov/bioenergyatlas/</u>

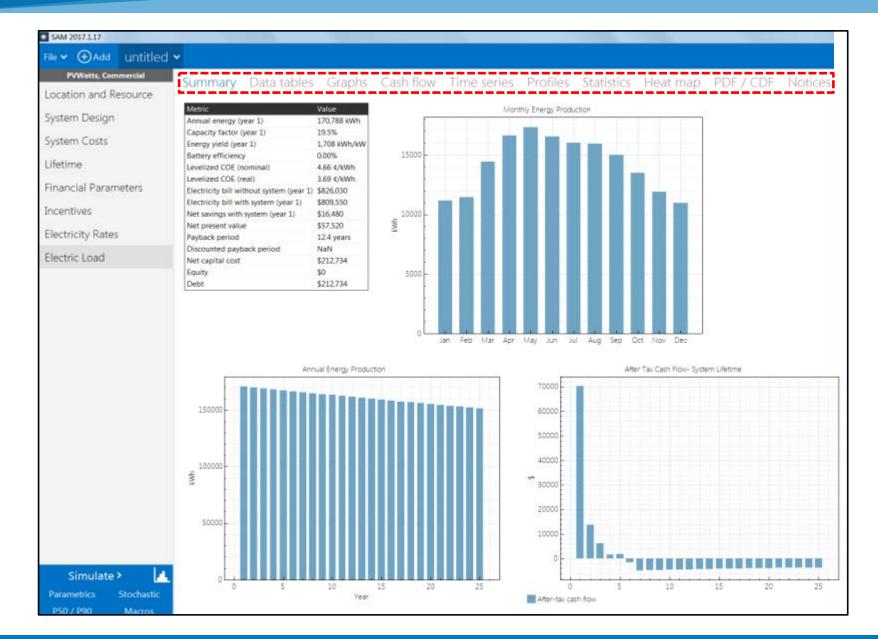
Software Tool Example: System Advisor Model (SAM)

SAM 2017.1.17

Choose a performance model, and then choose from the available financial models.

•	Free web download	Photovoltaic (detailed)				
	 https://sam.nrel.gov/ 	Photovoltaic (PVWatts)				
		High concentration PV				
	 Tutorial is available 	Wind				
•	Uses TMY hourly weather	Biomass combustion				
	•	Geothermal				
	data	Solar water heating				
•	Models many energy	Generic system				
		CSP parabolic trough (physical)				
	systems	CSP parabolic trough (empirical)				
•	Detailed Performance	CSP power tower molten salt				
		CSP power tower direct steam				
	modeling	CSP linear Fresnel molten salt				
•	Detailed financial	CSP linear Fresnel direct steam				
		CSP dish Stirling				
	modeling	CSP generic model				
•	Detailed results	CSP integrated solar combined cycle				
	Detailed results	Process heat parabolic trough				
		Process heat linear direct steam				

SAM: Software Layout & Detailed Performance Modeling


- SAM is pre-populated with default values
- SAM is set up with input boxes and dropdowns
 - Inputs are in black font
 - Calculated values are in blue font
- Detailed Performance modeling
 - Location & Resources
 - System Design

SAM 2017.1.17			-				-				
ile 🗸 🔶 Add	untitled ~										
PVWatts, Comr	nercial	System Paramete	rs								
ocation and Re			System nam	eplate size		100	kWdc				
ystem Design			N	lodule type	Stand	lard		•			
ystem Costs	i			to AC ratio		1.2					
-				nverter size			kWac				
ifetime			Inverte	r efficiency		96	*				
inancial Param	eters	Orientation						-			
ncentives		Azimuth	Tilt			A		Fixed ope			•
loctricity Datas	9	w 200	E Vert				Tilt			degrees degrees	
lectricity Rates	6	270	90 Hori:	i,	Gro	und cover			0.4		
lectric Load		5 160			0.0	and corten	age rate			1	
	1	Losses							_		_
			Soiling		2 %		Cor	nnections		0.5	%
			Shading		3 %	Light-inc	luced deg	gradation		1.5	%
			Snow		0 %		N	ameplate			%
			Mismatch		2 %			Age			%
			Wiring		2 %		A	ailability		3	%
				1	User	specified	total syste	em losses		20.95	%
			_								
						1	otal syste	em losses		14.08	%
		Shading Edit	shading losses	Edits	hadin	g	Op	en 3D shad	de cale	culator	
		-Curtailment and	Ausilability								
Simulate >		Curtailment an	d availability k		1	Edit losse	Par .	stant loss: 0			
	Stochastic	reduce the syst system outage						rly losses: N om period		e	
P50 / P90	Macros										

SAM: Detailed Financial Modeling

PVWatts, Commercial	Project Term Debt									
Location and Resource		100	P/	Net capital cost	\$ 212,733.50			verage cost of capital (WACC) reference. SAM does not use		
Location and Resource	Loan term		vears	Net capital cost	\$ 212,733.50		lue for cal			
System Design	Loan rate		%/year	WACC	3.35 %					
System Costs						to zer		Ih no debt, set the debt perce		
Lifetime	Analysis Parameters									
Financial Parameters	A	nalysis period	25 years		Inflatio	in rate	2.5	%/year		
rinanciai narameters					Real discour	nt rate	5.5	%/year		
Incentives					Nominal discour	nt rate	8.14	%/year		
Electricity Rates	Tax and Insurance Rates									
Electric Load	Federal income t	ax rate	28 %/year	-Pro	Assessed percentag	je	100 % of	installed cost		
	State income tax rate		7 %/year		Assessed value		\$ 212,733.50			
	Sa	5 % of total direct	% of total direct cost Annual			ecline 0 %/year				
	Insurance rate (a	3.5 % of installed cost		Property tax rate		2 %/year				
	Salvage Value		131							
	Net salvage value		0 % of installed co	ost	End of analysis period value			lue \$0		
	Depreciation									
	Federal			S	tate					
	No depreciation			e	No depreciation					
	S-yr MACRS		7		5-yr MACRS			7		
	Straight line	Edit	7 years		Straight line	_	Edit	7 years percentages		
	Custom	cuit	percentages		Custom		EUIL.	percentages		
	The depreciable basis is the s sum of investment-based inc					financir	ng cost fro	m the Financing page, less th		
Simulate >		50 Ki								

SAM: Detailed Results

- Track energy use and create an energy baseline
- Implement energy efficiency projects first and then consider renewable energy projects
- Use the tools available
 - Resource mapping
 - Google Earth
 - Software tools
 - PVWatts
 - SAM
 - HOMER
 - RETScreen
- Keep in mind the overall goal of reducing energy use and implementing renewable energy projects

Links to Resources & Tools:

Resource Mapping (free):

Google Earth (free):

PVWatts (free):

System Advisor Model (free):

HOMER (pay):

RETScreen (free):

PV System Costs Report (free):

Thank you

http://www.nrel.gov/gis/

https://www.google.com/earth/

http://pvwatts.nrel.gov/pvwatts.php

https://sam.nrel.gov/

http://www.homerenergy.com/

https://www.nrcan.gc.ca/energy/software-tools/7465

http://www.nrel.gov/docs/fy16osti/66532.pdf

Jimmy Salasovich james.salasovich@nrel.gov