

The LanzaTech process is driving innovation

- Process <u>recycles</u> waste carbon into fuels and chemicals
- Process brings underutilized carbon into the fuel pool via <u>industrial symbiosis</u>
- Potential to make <u>material</u> impact on the future energy pool (>100s of billions of gallons per year)

Naste Carbon Streams as a Resource for Gas Fermentation

Data: IEA, UNEP, Index Mundi, US DOE Billion Ton Update, 2010 global production; 2012 proven gas reserves data

Liew et al., 2016, Gas Fermentation – A Flexible Platform for Commercial Scale Production of Low Carbon Fuels and Chemicals from Waste and Renewable Feedstocks. *Frontiers Microbiol* 7: 694.

Gas flexibility = feedstock flexibility

- **1.** Low H_2 : If H_2 is not available in the feed gas, the microbe can make H_2 from CO and H_2 O as required
- **2.** High H_2 : Excess H_2 can be used to fix the carbon in CO_2
- 3. Higher carbon retention in presence of H₂

Any CO:H₂ ratio can be used

Ready Now: Scale-up of the LanzaTech Technology

State-of-the-art gas fermentation facilities with over 40 dedicated reactors

- Complete gas composition flexibility
- Online analytics and control (gas, biomass, metabolites)
- Multiple reactor configurations

Commercial Reactor Scale-up Factor Less Than What Has Been Proven at Demo Scale

Industrial waste gases: Are there Enough to make an Impact?

Significant Value Enhancement Integrates into industrial infrastructure

Refinery Waste Gas: 5B gallons/year

China: Scorpions, Drinking, and Deals

Global Technology "Lab".....Data, Data, Data

Confidential

Performance milestones achieved and exceeded for >1000 hours at 100K GPY (~400 KL/yr)

MSW to fuel

Project overview

LanzaTech has a two year partnership with a major Asian chemical company to convert live-feeds of syngas produced from municipal solid waste (MSW) into ethanol.

LanzaTech has designed, installed, and operates a pilot plant producing ethanol at a MSW processing facility.

LanzaTech's Modelling Capacity

Multiple reactants

🔬 🌐 📷 🗩

Validation of Reactor Technology

88

LanzaTech genome-scale model – summary

Synthetic Biology Capabilities – Advanced genetic toolbox in place

| Platform, >30 Products...

From Mill to Wing-An ATJ Pathway

88

Integrated Multi-Scale Platform

Aemetis Background

AEMETIS

- Advanced renewable fuels and biochemicals company
- Operating facilities:
 - 60M gpy 1G EtOH facility in CA
 - 50M gpy Biodiesel facility in India
- Vision to convert 1G to advanced
- 2015 revenues: \$147M
- Headquartered in Cupertino, CA
- Project funding in progress

- Color	
Aemetis Project	
Location	Modesto, CA
Feed Gas	Biomass syngas
EtOH Production Capacity	8M gpy
EtOH Production	

Become leading Cellulosic EtOH producer in US

Confidential

Commercial Scale Facilities

Caofeidian, China 16M gallons/year 2017

H

Steel Mill Value Proposition

LanzaTech business case:

• Providing 2x More returns from ethanol than from electricity

Broader Environmental Impact

Carbon is Only Part of the Story

Recycling Gases: Environmental, Economic, Social Benefit

Lifecycle GHG Emissions

- Michigan Tech University
- Roundtable on Sustainable Biomaterials (RSB)
- Ecofys
- Tsinghua University

8

Provides new revenue stream from waste materials

Provides energy security from sustainable, regional

resources

Provides affordable options to meet growing demand

Provides economic development that creates "green jobs"

What Do you want to make Today?

Paradigm Shift: chemical production plants that rapidly react to market conditions

Avoid the cycles

Challenge: Peterochemical price volatility

Steel in the ground is "hardware"

- ✓ Same reactor vessel
- ✓ Same feedstock
- ✓ Minor changes in separation

- ✓ Minor: Improved efficiency
- ✓ Major: New product molecule

Disrupting Market Cycles

✓ Same reactor ✓ Same operating conditions ✓ Same feedstock

"software"

Microbe 1.0 ✓ Ethanol

Microbe 1.1

✓ improved efficiency, tolerance, selectivity

Microbe 2.0

√ new product molecule

DISRUPTION = 1) Rapid Reaction to *Fluctuating Chemicals Market 2) Feedstock ≠ Commodity*

Transitioning to a Circular Economy is Key

A Carbon Smart World

Biofuels From Recycling of Atmospheric Carbon

Example:

Recycling Waste Gases with Bacteria: Ready Today (>40,000 hours on stream @ demo scale)

Enabling the Circular Economy

Fuel from CO₂: A path to carbon neutrality?

CO₂ is fixed into fuels and materials using "unlimited" lowest cost sustainable electricity: Domestic production, No crops, No land

Crossing the Valley of Death

Questions?

