Key Factors to Enable the Anaerobic Digestion of Food Waste at WWTPs

Paper coauthors: Jacqueline Zipkin and Phoebe Grow

Presenter: John Hake, P.E.
East Bay Municipal Utility District
DOE Biofuels and BioProducts Workshop – June 6, 2017
Presentation Overview

• EBMUD Background
• Resource Recovery (R2) Program Overview
• Biogas Production and Utilization
• R2 Program Evolution
• Existing Food Waste Program
• FW Program Expansion and Keys to Success
• Next Steps and Lessons Learned
EBMUD Background

Service Area

Main WWTP
- ~50 MGD average dry weather flow
- 168 MGD capacity

650,000 WW customers
EBMUD Background
Excess Digestion Capacity

- 11 in-service anaerobic digesters (1.8 MG each)
- Canneries facility was designed to serve: 20
- Remaining canneries: 0
R2 Program Overview
Trucked Waste

- Began accepting trucked waste in 2002
- 4,000 trucks/month
- 20 million gallons/month non-hazardous liquids
- Trucked wastes received 24-7, 365 days/year

2002
Septage Receiving
$1M

2004
Solid-Liquid Receiving
$7M

2014
Blend Tank Receiving
$13M
R2 Program Overview
Renewable Energy Generation

- Savings of ~$2M on plant power costs
- Electricity export revenue of ~$1M/year
- First wastewater treatment plant in N. America to produce more electricity than plant demand
% of WWTP demand met by onsite generation

Percent of Plant Power Demand Met by Onsite Generation

After turbine = 100% + export

Before R2 = 40% - 50%

Calendar Year
Biogas Production
High Strength Waste Contribution

~2/3 of biogas from R2 wastes
High strength wastes are delivered on no particular schedule. EBMUD often flares at the end of the week as deliveries increase and biogas production exceeds generation capacity.
<table>
<thead>
<tr>
<th>Biogas Alternative</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Storage</td>
<td>Biogas storage would reduce flaring by 7 to 13% but best to implement with future digester rehabilitation.</td>
</tr>
<tr>
<td>Additional Turbine</td>
<td>Greater benefits with >500 scfm additional biogas beyond current production.</td>
</tr>
<tr>
<td>CNG Production</td>
<td>CNG potentially a viable option, especially if an additional ~500 scfm biogas is produced such that existing electricity sales continue. Public filling station/tube trailers or pipeline injection considered.</td>
</tr>
<tr>
<td>Renewable Liquid Fuel Production</td>
<td>Bleeding edge technology and uncertain regulatory environment. No known successful analogous projects.</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>Potential option as a biogas off-take agreement with a private partner.</td>
</tr>
</tbody>
</table>
Biogas Utilization
NPV of 500 scfm biogas project

Pipeline Interconnection – Effect of “triggers” on 10-year NPV

- $5.1M additional NPV value with +360 scfm biogas
- $3.1M grant results in positive NPV
R2 Program Evolution
An Evolving Feedstock Portfolio

FY 2016 High-Strength Wastes

Food Waste

- Fats, Oils & Grease (FOG)
 - Breweries
 - Wineries
 - Soda Making

- Beverage industry wastewaters

- Rendering /blood waste

- Other food processing wastewaters

- Dairy/ cheese processing wastewaters
R2 Program Evolution
Food Waste Program Expansion
R2 Program Evolution
Benefits of FW Digestion at WWTPs

- Landfill diversion plus generation of renewable energy prior to compost or land application
- Volume reduction, less trucks on the road
- Most communities generate food waste and have wastewater treatment facilities – shorter haul distances
- Leverage existing infrastructure
• Competing for feedstock
 – Lowest cost is landfill disposal
 – Next lowest is poor quality compost
 – Followed by high quality compost
 – Highest net cost is anaerobic digestion (including the offset of the energy revenues)

• Costs for anaerobic digestion likely to become more competitive as technology matures and the value of the renewable energy is fully captured

• Capital investments
 – Managing risks
 – Not core business for wastewater agencies
 – Partnering is key
Existing Food Waste Program
Preprocessing SSO Offsite

1. Source separated organics (SSO) on transfer station tip floor
2. Food waste after grinding
3. Off-loading at EBMUD
4. Contaminant removal at EBMUD
Existing Food Waste Program
Ongoing Pilot Study: OFMSW

1. Press at offsite facility

2. Reject from offsite press

3. Off-loading at EBMUD

4. Contaminant removal at EBMUD
Food Waste Program Expansion
Pre-processing Offsite or Onsite?

- Onsite advantages:
 - Potential for direct haul to WWTP
 - Greater control of quality of material sent to digesters
 - “Build it and they will come”

- Offsite advantages:
 - Potential cost savings due to existing physical and administrative infrastructure at offsite locations
 - Synergy with other transfer station operations
Food Waste Program Expansion
Significant Capital Cost

Pre-processing Equipment
Food Waste Program Expansion
High Costs, Uncertain Revenues

<table>
<thead>
<tr>
<th>Tip Fees ($/ton)</th>
<th>Biogas Revenue ($/ton)</th>
<th>Operating Costs ($/ton)</th>
<th>Net Operating Revenue ($/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>worst</td>
<td>best</td>
<td>worst</td>
<td>best</td>
</tr>
<tr>
<td>$50</td>
<td>$100</td>
<td>$5</td>
<td>$40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-$100</td>
<td>-$25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-$45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$115</td>
</tr>
</tbody>
</table>

100 TPD project 20 year present value ($M)	-$20	$50
100 TPD project capital cost ($M)	$40	$20
20 year project NPV ($M)	-$60	$30

Notes:
- $/ton is $/ton as-collected source-separated organics
- 4% discount factor used, escalation not included
Keys to FW Program Success

External Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Issues/Opportunities</th>
</tr>
</thead>
</table>
| Proximity to local sources of food waste | ✓ | Densely populated San Francisco Bay Area
✓ EBMUD proximity to Port may afford opportunities for additional food waste |
| Favorable regulatory environment | ✓ | California regulatory agencies willing to be flexible in order to achieve broad climate change/sustainability goals |
| Limited food waste disposal alternatives | ✓ | Increasingly difficult for composters to operate in urban environments
✓ California regulations increasingly restrict landfilling of organics |
| Markets for end products | ✗ | Prices for renewable energy and alternative fuels at historic lows
Under-developed market for digestate fertilizer products |
Keys to FW Program Success

Internal Factors

<table>
<thead>
<tr>
<th>✔️</th>
<th>Institutional framework and internal support</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>Existing infrastructure/excess capacity</td>
</tr>
<tr>
<td>✗</td>
<td>Ability to offset existing O&M costs</td>
</tr>
<tr>
<td>✗</td>
<td>Control of feedstock quantity and quality</td>
</tr>
</tbody>
</table>

- **Institutional framework and internal support**
 - R2 program performance supports continuation/expansion
 - Existing administrative framework for trucked waste program

- **Existing infrastructure/excess capacity**
 - >200 tons per day (TPD) capacity at digesters
 - ~60 TPD capacity at dewatering
 - Limited excess capacity for power generation

- **Ability to offset existing O&M costs**
 - WWTP electrical demand already met
 - Limited opportunities to fuel EBMUD fleet with compressed natural gas (CNG)

- **Control of feedstock quantity and quality**
 - EBMUD is not a municipality and has no control of waste hauling contracts
 - Contamination level of food waste greatly influences operating costs
EBMUD Next Steps and Lessons Learned

• Continue on current course with:
 - Pilot studies
 - Development of partnerships
 - Investigation of FW program expansion

• Keeping in mind:
 - Resource Recovery requires innovative thinking and problem-solving approach
 - Adaptive management is key to addressing multiple, unanticipated challenges
 - Resource Recovery is not without risk and competition is real
Questions?

Contact info:
John Hake
East Bay Municipal Utility District
John.hake@ebmud.com
www.ebmud.com