

The Department of Energy: Wet and Gaseous Feedstocks: Barriers and Opportunities

Berkeley, CA

June 07, 2017

- Location
- Process Technology
- Production Capacity
- Feedstock
- Products

Paramount, California

Catalytic Hydrotreating (Honeywell-UOP)

3,000 bbls/day

Inedible agricultural fats and oils

Renewable F-76 and JP-5 Renewable Jet, Diesel and Gasoline

Risk Elimination and Capital Efficiency

Significant Use of Reconfigured Assets....

The AltAir Paramount project reconfigured existing equipment significantly reducing capex and expediting several permitting requirements relative to a similar greenfield facility

Supplemented with New Equipment...

The AltAir Paramount project also highlights a repeatable process that can be used to efficiently deploy similar conversions at other refineries

Equipment Description

- > Reactor charge pump
- > Recycle gas compressor
- > Reactor feed / effluent heat exchangers
- Reactor charge heater / stripper reboiler
- > Reactor effluent air condenser
- > Reactor product separator
- > Recycle gas amine scrubber KO drum
- > Recycle gas amine scrubber tower
- > Recycle gas compressor KO drum

Penex Unit

No. 5 HDS

Unit

- Penex reactors
- > Feed / effluent heat exchangers
- > Reactor charge heater

Offsite

- Tallow feed tank
- Vegetable oil feed tank
- > Diesel rundown tanks
- > Jet rundown tanks
- Finished diesel tank
- Finished jet tank

Equipment Description

Select New Equipment Purchased

- > Reactor feed / effluent heat exchangers
- Pretreat reactor
- > Deox reactor
- > Reactor effluent air condenser
- > Reactor product separator
- Reactor charge pump
- > Fractionation tower
- > Hydrogen from Praxair facilities

Great Green Fleet San Diego– January 20, 2016

UNITED

LAX – Los Angeles World Airports March 11, 2016

Los Angeles World Airports

Superior Product Specs and Market Acceptance

Preferred Compliance Fuel

	Petroleum ULSD	Biodiesel (FAME)	Green Diesel
Oxygen Content, %	0	11	0
Specific Gravity	0.84	0.88	0.78
Cloud Point, °C	-5	-5 to +15	-20 to +10
Cetane	40 - 52	50-65	70-90
Sulphur, ppm	<10	<2	<2
Energy Density, MJ/kg	43	38	44
Polyaromatics, vol-%	4 - 12	0	0
Colour	Clear	Light to Dark Yellow	Clear
Oxidative Stability	Baseline	Poor	Baseline

Pure hydrocarbon means: -Engine Compatibility

-No Blend Wall

-Storage and Logistics Infrastructure Compatibility

MGals (million gallons); BLtrs (billion liters).

Policy Hurdles

BD = biodiesel (fatty acid methyl ester); RD = renewable diesel (only HVO is currently commercialized);

Southern California Renewable Diesel Pricing

LA CARB Diesel + CAR + LCFS Fee - ?

- AltAir is primarily a rack seller
- In-State ratable production is advantageous
- Blender credit lapse has reduced volume and consistency of imports
- Reduced supply relative to demand combined with increasing product familiarity has facilitated near price parity with petroleum diesel

ASTM CERTIFIED FUEL

ASTM standard approved in May 2011 for up to 50/50 blend of Biojet and Jet-A

Renewable Jet

- ✓ Freezing point
- ☑ High temperature thermal stability
- ☑ Energy density
- **☑** Storage stability

- ☑ Elastomeric compatibility
- ✓ Must be a replacement solution
- ✓ Meet ASTM fuel specs
- ☑ Have a low CO₂ footprint

Synthetic Paraffinic Kerosene (SPK) from a Bio-Derived Source						
Property		Jet A or Jet A-1	SPK		ASTM Test Method	
			Camelina Jet	Algae Jet		
Fluidity						
Freezing point, degrees Celsius	max	-40 Jet A	-63	-55	D 5972, D 7153, D 7154, or D 2386	
		-47 Jet A-1				
Combustion						
Net heat of combustion, MJ/kg	min	42	44.0	43.5	D 4529, D 3338, or D 4809	

^{*} Data Provided by UOP

23 °C Lower Freeze Point

Nearly 4% more energy content

The Challenge: Carbon-Neutral Growth

Using less fuel

- Efficient airplanes
- Operational efficiency

Changing the fuel

- Lower lifecycle CO₂
- No infrastructure modifications
- "Sustainable Biofuel"

Sustainable aviation biofuel is an essential growth enabler

Copyright @ 2011 Boeing. All rights reserved.

... And Introducing Renewable Gasoline!

Renewable Naphtha + Petroleum Blendstock + Ethanol

- Naphtha is the third hydrocarbon product produced with jet and diesel
- Finished gasoline is approximately 50% renewable material
- Approved RFS pathway for D5 RIN generation
- LCFS pathway application being processed

Biomass-Based Diesel Feedstock Demand

- From 2005 to 2010, biomass-based diesel's usage of feedstock increased to over 2 billion lbs.
- From 2010 to 2015 this usage increased over 370% to over 9.9 billion lbs.
- Primary incremental feedstocks are yellow grease and the onset of DCO availability.
- From 2015 to 2026, usage is projected to increase approximately 65%.

Biomass-Based Diesel Feedstock Pricing

- Prices for most biomass diesel feedstocks are tied very closely to soybean oil.
- However, the price discount to soybean oil has been narrowing over the past several years due in large part to the California LCFS and the demand for low-CI fuels. As the California LCFS regulations tighten, the carbon price increases, which in turn increases the value of feedstocks that produce low CI fuels.
- The prices of most feedstocks are expected to remain at a discount to SBO, though the discounts are expected to narrow

Biomass-Based Diesel Feedstock Pricing

Low CI = More Credits = More Value (\$) = More Demand = Higher Feed Price

Don't Be A Policy Loser!

Legal, Agency and Legislative Policy Hurdles

- 2018 RVO and the 2019 biomass-based diesel requirement
- Americans for Clean Energy, Inc. et al. v. EPA, et al
- Requests to EPA for change of RFS Point of Obligation
- Renewable Enhancement and Growth Support Rule
 (E85 clarification, additional credit options, <u>biointermediates</u>, etc.)
- Potential legislative reform of RFS
- Argentinian anti-dumping/countervailing duty case
- BTC vs PTC, if anything
- 2 POET, LLC and others v. California Air Resources Board LCFS lawsuits

Thank You

