Substation Secondary Asset Health Monitoring and Management System
DOE Grant Award #DE-OE0000850

Kevin Chen & Lin Zhang
Electric Power Group
chen@electricpowergroup.com,
zhang@electricpowergroup.com
June 13, 2017
Washington, DC
Outline

- Introduction
- Background
- Objective
- Technical Merit
- Technical Approach
- Project Schedule
- Current Status
- Q&A
Introduction

- DOE/OE and DOE/NETL
 - Phil Overholt, Program Manager and Alicia Dalton-Tingler, Project Officer

- American Electric Power (AEP) – Sub-recipient
 - Project Manager / Alternate – Carlos Casablanca / Yanfeng Gong

- Professor Anjan Bose (Washington State University)
 - Technical Advisor

- Electric Power Group, LLC
 - Principal Investigators – Kevin Chen, Lin Zhang
 - Key Project Personnel – Ken Martin, Simon Mo, Tingyang Zhang, Neeraj Nayak, Joshua Chynoweth
Background

- Billions of dollars on transmission and distribution assets
- Key substation assets include transformers, circuit breakers, instrument transformers (CTs, PTs, CCVTs) and Intelligent Electronic Device (Relays, PMU, DFRs)
- Synchrophasor measurement systems have been widely installed in the North American power grids over the last decade
- Data from such assets can be used for asset health monitoring and take proactive steps to prevent equipment failure
- Proper functioning of substation assets is critical for power system operations, reliability and personnel safety
Research, design, develop and demonstrate software application in substation(s) to:

- Collect three phase measurements from substation equipment
- Process data from PMUs, DFRs and Instrument Transformers to derive synchrophasor equivalents and run a three phase Substation Linear State Estimator (SLSE) in real-time
- Monitor and characterize equipment data signatures
- Detect signature anomalies
- Alert end-users and provide equipment signatures for detailed forensic analysis
- Enable end-users to take needed proactive actions – calibration, repairs, replacement
Technical Merit
Using Data for Proactive Actions to Prevent Failure

- Monitor the status and health of substation equipment
- Provide early warning indications for potential malfunctioning equipment
- Proactively replacement and repair before equipment is damaged
- Reduce utility’s forced outage of equipment
- Reduce utility’s operating and maintenance costs
Data from substation will be provided by utility partners
- Leverage existing synchrophasor technology
- Research new algorithms in this project
- Validate at cost share partner substation locations
- Adapt for general commercial use at other utilities
Local Processing at substations: Results sent to asset monitoring center

- Three Phase Voltage and Current Waveform (1, 2, ..., m)
- Individual CT/PT timestamped sample value or phasor
- Relay/PMU
- Signal Mapping to Substation Model
- Substation Model (CIM)
- Physical Box In Substation – Hardened PC
 - Phasor Convertor
 - Substation DataNXT
 - SLSE Engine
 - Substation Network Model Integration
 - Post Processing for list of bad measurement
 - Alarming to Identify failing Equipment
- Data Center DataNXT
- Data Recording
- Synchrophasor Data Gateway
- Visualization Display
- Customized One-Line Diagram Kit
- From utility host
- EPG component
- To be developed

© Electric Power Group 2017. All rights reserved
<table>
<thead>
<tr>
<th>#</th>
<th>SOPO Tasks and Subtasks</th>
<th>Planned Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management and Planning</td>
<td>March – April 2017</td>
</tr>
<tr>
<td>2.0</td>
<td>Planning, Research, Design, and Specification</td>
<td>April 2017 – March 2019</td>
</tr>
<tr>
<td>2.1</td>
<td>Overall Project Management</td>
<td>April 2017 – March 2019</td>
</tr>
<tr>
<td>2.2</td>
<td>Research and Scoping Study</td>
<td>March – June 2017</td>
</tr>
<tr>
<td>2.3</td>
<td>Functional Design and Design Specifications</td>
<td>March – July 2017</td>
</tr>
<tr>
<td>3.0</td>
<td>Development, Testing, and Demonstration</td>
<td>July 2017 – August 2018</td>
</tr>
<tr>
<td>3.1</td>
<td>Pseudo-Synchrophasor Data</td>
<td>July – December 2017</td>
</tr>
<tr>
<td>3.2</td>
<td>Field Synchrophasor Data</td>
<td>December 2017 – March 2018</td>
</tr>
<tr>
<td>3.3</td>
<td>Sampled Data from Instrument Transformers</td>
<td>April – August 2018</td>
</tr>
<tr>
<td>4.0</td>
<td>Deployment and Demonstration at Host Utility</td>
<td>September 2018 – March 2019</td>
</tr>
<tr>
<td>4.1</td>
<td>Product Documentation</td>
<td>September – October 2018</td>
</tr>
<tr>
<td>4.2</td>
<td>Installation and Integration at Host Utility</td>
<td>October – November 2018</td>
</tr>
<tr>
<td>4.3</td>
<td>Site Acceptance Testing</td>
<td>November – December 2018</td>
</tr>
<tr>
<td>4.4</td>
<td>Demonstration at Host Utility</td>
<td>January – February 2019</td>
</tr>
<tr>
<td>4.5</td>
<td>Training</td>
<td>February – March 2019</td>
</tr>
<tr>
<td>5.0</td>
<td>Marketing and Outreach</td>
<td>September 2018 – March 2019</td>
</tr>
<tr>
<td>5.1</td>
<td>Market Research</td>
<td>September – December 2018</td>
</tr>
<tr>
<td>5.2</td>
<td>Commercialization Plan</td>
<td>January – March 2019</td>
</tr>
<tr>
<td>5.3</td>
<td>Outreach</td>
<td>September 2018 – March 2019</td>
</tr>
</tbody>
</table>
Task 2.2 Research and Scoping Study - Equipment

- Conducting a research and scoping study of bad data pattern and relationship to types of equipment failure, as well as alarming criterial for failure detection.

Current Transformer (CT)

Potential Transformer (PT)

Coupling Capacitor Voltage Transformer (CCVT)

Source: IEC Capacitive & Coupling Capacitor Voltage Transformers (CVT & CCVT), http://www.gegridsolutions.com
Cause of Failure / Failure Modes

<table>
<thead>
<tr>
<th>CT</th>
<th>PT</th>
<th>CVT/CCVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Loose Connections or Corroded Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shorting of Winding Turns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Turns to Ground Shorting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Open CT secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Erosion of insulation, Insulation Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Voids in Insulation – Increased moisture content, Partial Discharge – increased dielectric losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Aging of CT and wiring insulation, Oil Leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High Insulation power factor of internal insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Magnetic core saturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ferroresonance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Switching Transients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PT Saturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Insulation Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High Stress Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Difference across some of the windings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shorting of Adjacent Windings due to insulation failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Deterioration of Insulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transient Overvoltage's & Lightning surges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Loose Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Failure of one or more capacitor elements in HV stack – Overvoltage and Stress on each capacitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Failure of one or more capacitor elements in LV grounding stack – decrease in secondary voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Failure of intermediate voltage transformer or series reactor – change in phase angle and/or voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Failure of Ferroresonance suppression circuit – waveform distortion, changes in phase angle and/or voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multiple element failure can cause explosion – Staff Safety Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Failure of filter circuit or spark gaps used for harmonics & transient voltage reduction – causes increased stress on components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• External Flashover, failure of other components – expansion membrane, gasket seal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Low oil conditioned due to oil leak – capacitor failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Signature Examples – CT

Normal Operation – No failure

Open Circuit in CT secondary due to Wiring damage

High frequency transients observed 8 minutes before CT failure (partial discharge in insulation)

Reference: [G]

Reference: [F]
Signature Examples - PT

- Ferroresonance – Opening Breaker
- Switching Transients
- Loose Connection at PT feeding the PMU
- Blown fuse on One Phase of PT
- Internal Primary Winding Issue

Reference: [A]
Reference: [C]
Signature Examples - CCVT

Capacitor Failure in C phase

Loose Fuse Connections in CCVT Safety Switch

A - Phase CCVT Issue

Reference: [A]

Reference: [A]

Reference: [B]
Available Inputs and Desired Output

<table>
<thead>
<tr>
<th>Available Input - Data</th>
<th>Desired Output – Flag Asset Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raw PMU Data</td>
<td>• Minimal false positive</td>
</tr>
<tr>
<td>• LSE Data</td>
<td>• Minimal false negative</td>
</tr>
<tr>
<td>• Redundant PMUs</td>
<td>• Maximize prediction time</td>
</tr>
<tr>
<td>• Other Phases</td>
<td>• Within Computing</td>
</tr>
<tr>
<td>• DFR Data*</td>
<td>Constraints</td>
</tr>
</tbody>
</table>
5 Processes - Detect and React to Anomalies

1. Prepare/Smooth Data
2. Extract Feature
3. Classify and Quantify Feature
4. Perform pattern recognition, comparison, etc.
5. Flag data, record data, execute other algorithms

PMU/LSE Data

Note: Some algorithms may perform more than one process in a single step.
Current Project Status

- Contract Awarded: March 15th, 2017
- Project Planning Meeting with AEP: March 29
- DOE Official Kickoff Meeting: April 10
- PMP Update Completion: April 14
- Project Update to Industry
 - NERC SMS: May 18
- Task 2.2 Research and Scoping Study completion: June 9
- Task 2.3 Functional Design and Design Specifications: Started
Thank You!

Heng (Kevin) Chen
chen@electricpowergroup.com

Lin Zhang
zhang@electricpowergroup.com

Electric Power Group (EPG)
201 S. Lake Ave. Suite 400
Pasadena, CA 91101
(626) 685 2015
Technical Approach

- Utilize Substation Linear State Estimator (SLSE) technology to solve the substation states and detects bad measurements from PMUs, DFR’s and other measuring devices
- SLSE results will be saved in a local archiver for post processing
- Develop algorithms and logic to detect measurement anomalies and identify problem root causes
- Develop alarming module to trigger early warning and alarm information for failing equipment, to the responsible operators and engineers or transmission field service technician
5 Processes - Detect and React to Anomalies

1) Prepare/smooth and clearly delineated anomalous data
 - Critical - if anomalous data not clearly delineated
 - Unnecessary - if anomalous data clearly delineated

2) Extract the anomalous data from PMU data signal
 - Redundant PMU - difference in PMU signals
 - Single phase failures - difference in phase signals
 - Else - difference in prediction and actual signal

3) Classify and quantify the features/anomalies
 - Below min threshold → ignore noise
 - Predetermined shape and magnitude → threshold comparison
 - Indeterminate shapes, sizes, frequency, etc. → wide net of complex algorithms such as pattern recognition

4) Perform threshold calculation dependent on:
 - Design parameters and constraints for project
 - Range of expected anomalous signals
 - False positive vs false negative balance

5) Take action
 - Flag
 - Record data
 - Further calculations
Algorithm for Feature Extraction

- General approach to direct feature extraction without conditioning
 - Peak (max), derivative, difference, normalization, detrend, frequency filters, signal to noise ratio

- Simple processing/smoothing (moving window)
 - Averaging smoothing methods (moving average, moving RMSE, weighted moving average)
 - Exponential Smoothing Methods

- Dimension/Data reduction
 - Time or Frequency analysis
 - Singular value decomposition (SVD)/Principal component analysis (PCA) [5]
 - Discrete/Fast Fourier Transform (DFT)/(FFT)
 - Already performed on PMU data
 - Time-frequency analysis algorithm
 - Matching Pursuit Decomposition (MPD) [3][4]
 - Wavelet transform (WT) [11]

- Data conditioning and removing bad data
 - Quadratic prediction model and Kalman filter [9]

Note: Algorithms may be used in series, parallel or combination.
References

B. Bogdan Kasztenny and Ian Stevens, “Monitoring Ageing CCVTs – Practical Solutions with Modern Relays to Avoid Catastrophic Failures”, March 2007

E. Deepak Rampersad, “Investigation into current transformer failures within Eskom distribution”, December 2010

F. Darren Spoor and Jian Guo Zhu, Monitoring current transformer secondary circuits to forewarn of catastrophic insulation faults

References

Acknowledgment and Disclaimer

• Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-OE0000850.”

• Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."