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INL Real Time Energy Systems Laboratory’s
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Real-Time Hardware-In-the-Loop Modeling and
Testlng Environment
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INL’s Current Projects Related to Grid
Simulation and Scenario Planning
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Real Time Thermal Electrical Co-simulation
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Multi-time Scale of Energy Storage Devices
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GMLC 1.3.9 — Smart Reconfiguration of Idaho Falls
Power Distribution Network

e NS3-based communication layer is emulated for co-simulation of power
systems and control/communication network between RT models and

hardware devices
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CEC Microgrid Project — Blue Lake
Rancheria, CA PG&E Grid

e Black Start with Diesel generator
e Automatic reconnect to grid when islanded with Diesel generator
e Transition to Islanded Operations with MGMS Unresponsive
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Fig. 5 BLR Microgrid Setup and HIL Testing
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Dynamic Modeling and Validation of Electrolyzers
In Real Time Grid Simulation
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Frequency Support by Multiple Electrolyzers

Multiple electrolyzers controlled by
Front End Controller can enhance
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Variability of Renewable / Hydrogen

Refueling Stations

* Renewable Energy sources such as wind and solar demonstrate high degree
of time dependent variability i.e., seconds to minutes to days...

* Electrolyzers have an innate capability to respond in seconds to follow control
set points
* How can electrolyzers offset the variability observed by the power?
— Grids expected predictable and non-varying generation sources
— Hydrogen demands per day for different years are used as a constraint
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2018 Case with 7,200 FCEVs

* Objective: Offset time-dependent,
aggregated variability of solar and
wind power using electrolysis

» Total of 13 MW electrolyzer plant is
used for this example

« 2018 test case projections from
ARB on vehicle fuel use to generate
1,800 kg/day of hydrogen for 7,200
FCEVs

«  Approximate fuel dispensed in
Santa Clara, Sacramento, San
Francisco, Marin, Contra Cost and
Alameda county

» Total energy consumed to generate
this hydrogen demand 90.28
MWh/day
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Wind, Solar, and Electrolysis

Real Power in MW
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Advanced control of a 13 MW .
electrolysis plant to offset variability
of wind and solar power
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INL’s Capabilities Related to Related to
Grid Simulation and Scenario Planning
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Integrated Multi-time Scale Real-Time Simulation Test-bed
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Real-time Simulation with Communication Emulators

With the integration of modern and legacy utility devices, it is imperative
to co-simulate communication with power system devices
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Distributed Architecture for Simulation, Testing
and Visualization using HIL

 Graphical work Instruction
* Power System » Operator Training
Simulated in Virtual « Real Time Situational

= Awareness for Grid

Data link

System Under Test
(Power Hardware)

Communication Layer

V.irtual Real (mult|-protocol, multi- Actual Hardware Power Systems
Time Power topology)
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{ com >Communlcatlon network 1-10Gb/s *Source: Center for Advanced Energy Studies at Idaho National Laboratory
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Scalable Hardware-In-the-Loop (HIL) Co-simulation
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Real-time Connectivity Across Organizations

RT-Super Lab for the Futuristic Grids
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Multi-Lab Co-simulation andTP)HIL Grid Testing
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Thank You
&
Questions

Rob Hovsapian
rob.hovsapian@inl.gov
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