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Overview

• Project start: 2/01/2016
• Project end: 1/31/2019
• Percent complete: 35%

Timeline

Budget

Barriers

Partners• Total project funding: $715,933
• DOE share: $643,839
• Contractor share: $72,094

• Budget Period 1: $299,417
• Budget Period 2: $258,664

• Increase the fuel efficiency of 
passenger cars

• Lack of modeling capability to 
accurately simulate engine knock

• Inadequate fundamental 
understanding of turbulence-
chemistry interactions during 
engine knock

• OSU (Lead)
• ORNL
• Convergent Science
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Project Objective: Improving predictive capability for 
engine knock by developing a new, physics-based 
large eddy simulation (LES) combustion model

Relevance

• Reproducing cycle-to-cycle variations
• Accurately predicting mean heat release/reaction rates 

during end gas ignition
• Using detailed (reduced) chemical mechanism (~100 

species) in engine knock LES
Objectives in the Period of Feb. 2016-Mar. 2017
• Developing a base code
• Generating direct numerical simulation (DNS) data base 

for model validation
• Acquiring in-cylinder pressure data from laboratory 

engine experiments under knocking and knock-free 
conditions
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CMC-FPF: LES combustion model for knock
Approach: Model

• CMC for end-gas ignition
• Conditional Moment Closure:

Klimenko and Bilger (PECS, 1999)
• Accurate reaction rate prediction

• Volume Avg. vs. Surface Avg.
• Surface averaging in CMC preserves

small-scale scalar structures and
thus can lead to accurate reaction
rate estimation

• FPF for SI premixed flame
• Front Propagation Formulation: Kim

(JCP, 2015)
• Cycle-to-cycle variations in premixed

burning rates
• Reproducing the level set method in

the flamelet regime
• Applicable to broader premixed

combustion regimes
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End-gas ignition CMC can accurately estimate reaction 
rates in a computationally efficient way

Approach: Model

• Small-scale scalar structures 
resolved in enthalpy space

• Total enthalpy or sensible enthalpy
• Thus, the number of grid points in 

ignition CMC can be much smaller 
than the number of typical LES grid 
points

• To be computationally more efficient than 
conventional LES where volume-
averaged (filtered) species mass 
fractions and temperature are used to 
estimate reaction rates
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Model development supplemented by direct numerical 
simulation (DNS) and engine experiments

Approach: Milestones

• Developing a CMC solver for end-gas ignition (Y1Q2)
• Developing a base CMC-FPF solver (Y1Q4)
• Experimental campaign I (Y1Q4)
• DNS of end-gas knock (On-going)

• Detailed chemistry ignition 2-D DNS: Reaction rate estimation
• Two-step-chemistry ignition 3-D DNS: Scalar dissipation
• Premixed flame DNS: Premixed flame modeling

• Validation of CMC-FPF with DNS data (On-going)
• Base engine simulations – knock-free (Started)

• Premixed model to be implemented as UDF of Converge CFD

Milestones
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Developed base knock CMC code
Technical Accomplishments

• Transient, 1-D transport in 
enthalpy space, and reaction

• Time integration
• Stiff ODE solvers

• CVODE, DVODE (Lawrence 
Livermore National Laboratory)

• Plan to include other solvers

• Transport in enthalpy space
• Second-order finite difference

• Chemistry
• CHEMKIN compatible
• Use of CHEMKIN II (Sandia 

National Laboratory)
• Adaptive mesh refinement

725K
700K
650K

End-gas ignition in engine-like pressure 
evolution (Stoichiometric iso-octane/air 
mixture; 116 species reduced mechanism 
for PRF, Luong et al. CnF 2013; imposed 
thermal stratification; three spark timings)

Initial temperature
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Developed initial interface module to couple CMC-FPF 
solver with an LES solver
• CMC-FPF combining

• Knock CMC
• Base solver described before 
• Included transport in physical 

space: operator splitting, high-
order TVB finite difference

• Premixed Flame FPF
• Fifth-order WENO scheme (Jiang 

and Shu JCP 1996) for regularized 
Delta function

• Coupling with an LES solver
• Initial interface module developed
• Coupled with low Ma flow solver, 

NGA (Desjardins et al. JCP 2008)

Model Development

enthalpy density

Ignition 
spots

burned burned

burned burned

Premixed flame propagation and end-gas 
ignition in constant volume configuration

Initial 
field

end-gas end-gas

end-gas end-gas
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Single-cylinder engine laboratory used to identify 
knocking conditions by statistical analysis
• 2007 GM LNF 2.0L Ecotec

Single cylinder
• 9.2:1 compression (stock)

• Conditions 
• Fuel: Iso-octane
• 2000 r/min
• CA50 from knock to 50 aTDCf

• Intake temp from 35°C to 135°C
• Constant airflow (4 levels) all 

positive gauge pressure
• 0 and 15% EGR

• Knocking cycles identified as 1 
bar KI

Experiments
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Experimental conditions “slice” through ignition delay 
regions for each boost condition using intake temp.
• Experimental conditions varied

• Intake temperature, boost, and EGR rate (0% and 15%)

Experiments

946 airflow
804 airflow
684 airflow
581 airflow
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DNS: Detailed Chemistry
Performed detailed-chemistry 2-D DNS to generate 
database for model validation
• Low Ma, second-order kinetic 

energy conserving scheme 
(NGA)
• Combined with CHEMKIN and 

TRANSPORT package
• 116 species PRF reduced 

mechanism
• Isotropic turbulence with 

thermal stratification
• Conditions

• PRF80/air, 20-30bar, 800-970K, 
0.8-1 equivalence ratios

• u’ ~ 1.2m/s, lt~1.2mm,Trms~40K
• Focusing on reaction rate 

estimation during ignition

Temperature and H2O2 mass fraction fields during 
end-gas ignition (T0=850K, P0=30bar, stoich. 
PRF80/air, 5mm2, 10242 grid points). Refined grid 
DNS (30722) in progress.

1.15ms 1.9ms
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Model Validation
Assessed accuracy of reaction rate estimation
• Sensible-enthalpy or total-enthalpy can be used as a conditioning 

variable (for surface averaging)
• Sensible-enthalpy CMC accurately estimates heat release rates, 

while total-enthalpy CMC leads to substantial errors
• More investigation for a wider range of conditions is necessary

DNS
CMC

DNS
CMC

(data from the case with T0=850K, P0=30bar, stoich. PRF80/air, 3.2mm2 

20482 grid points; at the time of the maximum heat release)
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Model Validation
Assessed accuracy of reaction rate estimation
• Conventional LES where volume-averaged (filtered) 

species mass fractions and temperature are used to 
estimate reaction rates leads to substantial errors

DNS
CMC

LES (fine; 𝑙𝑙𝑡𝑡 = 12 △𝑓𝑓)

exact
LES (very fine; 𝑙𝑙𝑡𝑡 = 48 △𝑓𝑓)

LES (𝑙𝑙𝑡𝑡 = 6 △𝑓𝑓)

(data from the case with T0=850K, P0=30bar, stoich. PRF80/air, 3.2mm2 

20482 grid points; at the time of the maximum heat release)
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DNS: Mixing Statistics
Two-step chemistry 3-D DNS to extract scalar 
dissipation statistics under way  
• Two-step chemistry

• Iso-octane oxidation step/CO-CO2 conversion 
(Misdariis et al. PCI 2015)

• Conditions
• Stoich. Iso-octane/air
• P0: 30bar, T0: 970K, initial Trms~50K
• Isotropic, forced turbulence/thermal-energy
• Taylor-scale Reynolds number~96
• Turbulence intensity~3.2m/s
• 3.2mm3, 5123 grid points (planning a case with 

15363 grid points)

• Extracting statistics of scalar dissipation rates 
and FDF for total enthalpy and sensible 
enthalpy

• Models needed for CMC

N = DTrh ·rh
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DNS: Premixed Flame
Performed single-step chemistry 3-D DNS to validate 
and refine premixed flame modeling
• DNS with varying Reynolds numbers in the 

thin reaction zones regime
• Extracting flame wrinkling characteristics 

and validating subfilter flame speed models 
used in FPF

DNS Conditions
Taylor-scale Reynolds 
number: 52, 68, 100 
(one more planned: 
~150)
22M-420M grid points
Karlovitz number~4
u’/sL~ 5 - 7.7

Reaction progress variable

burned

unburned
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Responses to Previous Year 
Reviewers’ Comments

• This is the first annual merit review of the project
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Collaborations

• Ohio State University
• Model development and validation

• Oak Ridge National Laboratory
• Experiments and assist in engine simulations

• Convergent Science
• Converge CFD

• Oak Ridge Leadership Computing Facility
• DD allocation

• Ohio Supercomputer Center
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Remaining Challenges/Barriers

• Development of a submodel for scalar dissipation 
rates of sensible enthalpy (reacting scalar)
• Many studies for conserved scalar (total enthalpy), few 

for reactive scalars (sensible enthalpy) in the context of 
LES

• Coupling with commercial CFD software
• Coupling with Converge CFD (implemented as UDF)
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Proposed Future Research
• Validating/developing reaction rate estimation and 

scalar dissipation models using end-gas ignition DNS 
data (Year 2)
• Complete larger-scale DNS cases
• Further assess total-enthalpy-based and sensible-enthalpy-

based approaches
• Develop/validate scalar dissipation models

• Engine simulations for knock-free                         
conditions and validating premixed flame                 
modeling (Year 2) – Basis of Year 3                         
efforts for knocking engine simulations

• Engine experiments (Year 2)
• Complete acquiring in-cylinder pressure                              

and gas sampling data for a range of                                   
knocking and knock-free operations

Geometry model of engine 
from scanned hardware

Any proposed future work is subject to change based on funding levels.
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Summary
• CMC-FPF consistently combines CMC for end-gas 

ignition with FPF for SI premixed flame propagation
• LES-based knock prediction employing detailed chemistry

• Base code and validation data made available
• Developed base CMC-FPF code 

• Generated DNS and experimental data for validation

• In Year 2, continuing model validation 
• Continuing generation of DNS and experimental data

• Submodel development/validation using DNS data

• Knock-free engine simulations with premixed flame FPF 
model - serving as a basis of Year 3 efforts for knocking 
engine simulations and model validation



21

Technical Backup Slides
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Approach: Model

Conditional moment

samples taken for mixture with a 
particular value of enthalpy (h) in the 
end-gas region 

Knock CMC

Mapping of scalar structures in physical 
space (x) to enthalpy space enabling 
accurate estimation of reaction rates

Enthalpy~temperature~reaction rate
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Approach: Model

FPF for SI Premixed Flame
Solving the conventional transport 
equation for the reaction progress 
variable (end-gas indicator)

With reaction rates designed to 
reproduce a specified propagation 
speed of the flame regardless of 
resolution levels

Sub-filter flame speed Regularized delta function

Kim, J. Comput. Phys. (2015)

end-gas

burned

Premixed flames are typically under-
resolved in LES
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Model Development

• Needing models for
• Sub-filter flame speed
• Regularized delta function

• Assessment of sub-filter flame 
speed model in progress

Premixed flame FPF validation under way
Dynamic fractal model

LES of a premixed jet flame
(F3 Flame of Chen et al. CnF 1996)
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• Coupled experimental 
measurements of in-
cylinder thermodynamics 
with simulated constant 
volume ignition delay

• 2-zone model for 
experimental data

• Indicate measured bulk-
gas state at knock

• Determine cycle-by-cycle 
ignition exposure at knock 

Experiments

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

=
1

𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜃𝜃
𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 360 (𝐶𝐶𝐶𝐶)

60000 (𝑚𝑚𝑒𝑒)

∗ �
𝐼𝐼𝐼𝐼𝐼𝐼

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 1
𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖.𝑣𝑣𝑖𝑖𝑙𝑙 𝐼𝐼𝐼𝐼 (𝑚𝑚𝑒𝑒)𝑒𝑒𝜃𝜃
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Effects of Low-Temperature bulk as reactions on 
knock observed in experiments

• Increased low temperature 
reactions (PSHR) reduced 
time to knock

• EGR independent
• Reduced variability with 

PSHR
• Thermal or chemical effect?
• will be studied in simulation 

effort

Experiments




