Considerations for Corridor and Community DC Fast Charging Complex System Design

PI: James Francfort Presenter: John Smart Idaho National Laboratory

June 8, 2017

000

Idaho National

Laboratory

U.S. Department of Energy Vehicle Technologies Office 2017 Annual Merit Review And Peer Evaluation Meeting

> Project ID: VAN024 INL/MIS-17-41871

This presentation does not contain any proprietary, confidential, or otherwise restricted information



#### **Overview**

#### Timeline

- Start: August 2016
- End: April 2017
- 100% complete

#### Barriers

- Infrastructure availability has long been a major barrier to plug-in electric vehicle (PEV) adoption
- Charging time is a barrier to consumer acceptance of PEVs

#### Budget

- Total: \$150,000
  - INL: \$120,000
  - EAI: \$20,000
  - Atlas: \$10,000

#### Partners

- Electric Applications Incorporated (EAI)
- Atlas Public Policy



#### Relevance

 Battery electric vehicles (BEVs) with larger battery packs, longer ranges are being introduced at mass-market prices

Example: 2017 Chevrolet Bolt, currently on sale, has an EPA-estimated range of 238 miles (www.chevrolet.com)



Source: media.chevrolet.com

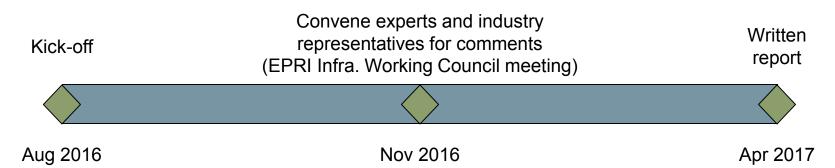
- Larger batteries, longer range mean BEVs need faster charging infrastructure
  - Consumers are accustomed to the gasoline refueling experience (<10 minutes)</li>
  - To fully charge long-range BEV in 10 20 min, it may require charge rates up to 350 kW
- This project studied the design and costs of high-power, multi-port DC fast charging complexes that provide a gas station-like experience



## **Objectives**

Determine necessary considerations for deployment of high-power DC fast chargers (DCFCs) to provide convenient fast charging for BEV drivers

- Summarize lessons learned from previous projects
- Present general design considerations for multi-port DCFC complexes


Estimate the costs associated with deploying and operating DCFC complexes

- Perform DCFC complex design case study
- Estimate rough order of magnitude (ROM) cost
- Analyze business case



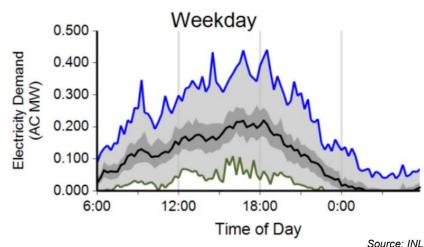
## Approach

- Review previous DC fast charging projects to understand how DCFCs have been used and any issues that arose
- Identify DCFC complex system design parameters with respect to:
  - Customer usage
  - Grid impact
  - Location (rural vs. urban)
  - Strategy for system upgrades as technology evolves
- Perform DCFC complex design case study
- Use literature, prior work, personal expertise, and industry input to develop cost estimates for installing and operating hypothetical rural and urban fast charging complexes





#### Accomplishments


- The project was completed and a final report was published to provide a guide post for industry
- Based on simplified assumptions, overall costs can be reduced by:
  - Incorporating energy storage and onsite solar generation
  - Employing a phased upgrade strategy
- However, costs may still be too high to make a reasonable business case, based on revenue from charging alone
- High-power DCFC charging complexes may need additional revenue sources to be financially viable
- The following slides detail findings and recommendations for future work



#### Lessons Learned from Previous DCFC Projects

Fast charger usage:

- The most highly utilized DCFCs tended to be located close to major transportation corridors
- Most drivers used DCFC in cities on short outings, but DCFC on travel corridors proved able to extend driving range
- DCFCs were used most often between 4 pm and 7 pm, and most charges last between 5 and 25 minutes



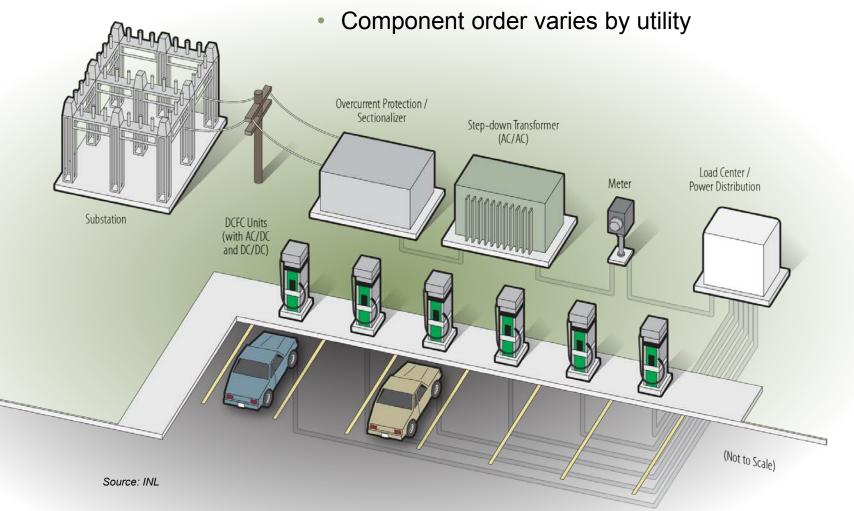
Aggregate DCFC Charging Demand



## **Lessons Learned from Previous DCFC Projects**

Challenges:

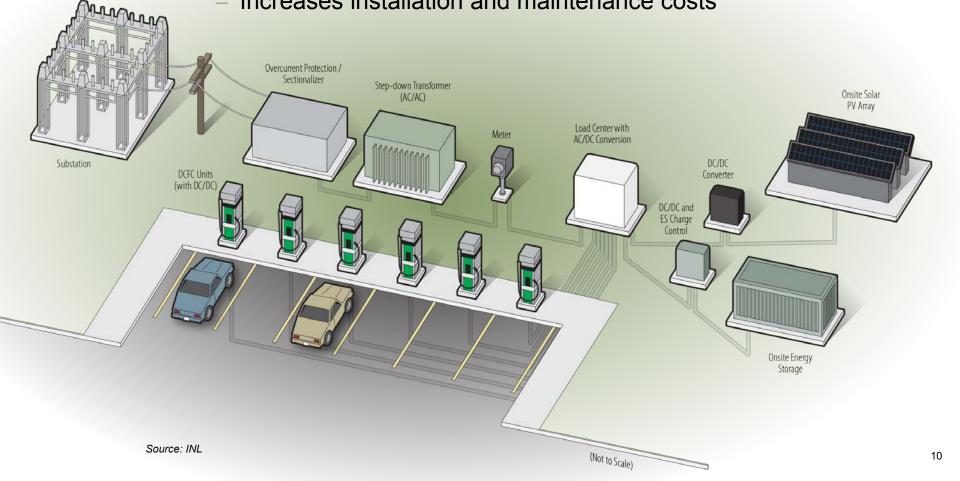
- Private investment in public charging is often not profitable under current market conditions
- Operating costs can be significant barrier
- Monthly electricity costs can be extremely high depending upon utility rate structures
- Capital costs are also significant
- New electrical service is often required for installation, significantly increasing site costs
- Surface and underground work (trenching, paving, etc) is one of the major cost drivers of DCFC installation




Source: INL



## **DCFC Complex Design Considerations**


- DCFC complex design expected to include components as shown
- Component size may vary for urban vs. rural complexes



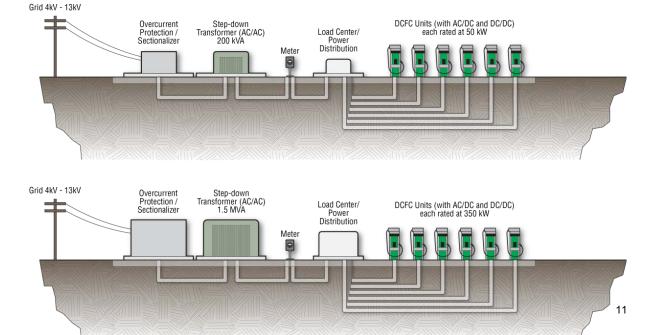


#### **DCFC Complex Design Considerations**

- On-site energy storage (ES) and photovoltaic (PV) solar generation decouples power/energy provided to vehicles from power/energy drawn from the grid
  - Reduces electricity costs and grid impact
  - Increases installation and maintenance costs





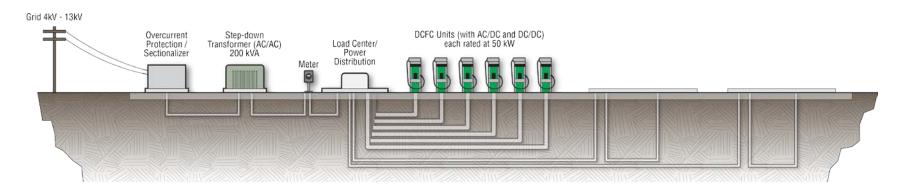

# Upgradability

- Complex should be designed to accommodate upgrades to higher capacity
- Portions of site can be sized for future power expansion on initial install
  - Choose component size so surface/underground work (trenching, conduit, paving) only needs to be done once
  - Concrete pads, transformer vault sized for higher power to reduce cost, ensure adequate expansion space

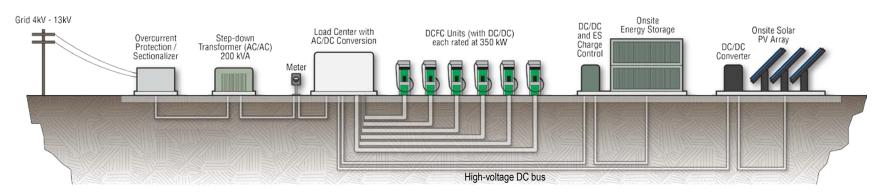
#### Strategy to upgrade to higher power without ES and PV

6 x 50 kW DCFC units installed but site constructed to support 6 x 350 kW units

*Components upgraded for 6 x 350 kW DCFC units* 







## Upgradability

#### Strategy to upgrade to higher power with ES and PV

#### 6 x 50 kW DCFC units installed but site constructed to support 6 x 350 kW units



#### Components upgraded for 6 x 350 kW DCFC units





#### **Design Case Studies for Cost Estimation**

- Designs were chosen for hypothetical DCFC complexes in order to estimate capital and operating costs
- "Minimum" and "Ultimate" capability requirements were specified to approximate short-term and future scenarios
- Customer demand was based on load factor (i.e. energy/demand) of 30%, an ideal case for minimal grid impact

|                                         | Minimum Capability | Ultimate Capability |
|-----------------------------------------|--------------------|---------------------|
| # of Charge Units                       | 6 charge units     | 6 charge units      |
| Charge Power                            | 50 kW              | 350 kW              |
| Grid Power Supply w/o<br>Energy Storage | 160 kW             | 1,060 kW            |
| Grid Power Supply w/<br>Energy Storage  | 110 kW             | 210 kW              |



#### **Cost Comparison**

- Developed ROM cost estimates for station capital cost and operating cost
- Given the assumptions used,
  - For minimum capability, it is more cost-effective without ES and PV
  - For ultimate capability, it is cheaper to use ES and PV and keep grid power low

| Minimum Capability – Six 50 kW |                            |              |                          |              |                          |  |  |  |
|--------------------------------|----------------------------|--------------|--------------------------|--------------|--------------------------|--|--|--|
| Rural Corridor Urban Community |                            |              |                          |              |                          |  |  |  |
| Design Configuration           | Maximum Grid<br>Power (kW) | Capital Cost | Annual<br>Operating Cost | Capital Cost | Annual<br>Operating Cost |  |  |  |
| With ES and PV                 | 110                        | \$556,000    | \$170,600                | \$484,000    | \$163,000                |  |  |  |
| Without ES and PV              | 160                        | \$392,000    | \$170,700                | \$385,500    | \$165,500                |  |  |  |
| Difference                     |                            | -\$164,000   | \$100                    | -\$98,500    | \$2,500                  |  |  |  |

Does not pay back

Does not pay back

| Ultimate Capability – Six 350 kW |                            |              |                          |              |                          |  |  |  |  |
|----------------------------------|----------------------------|--------------|--------------------------|--------------|--------------------------|--|--|--|--|
| Rural Corridor Urban Community   |                            |              |                          |              |                          |  |  |  |  |
| Design Configuration             | Maximum Grid<br>Power (kW) | Capital Cost | Annual<br>Operating Cost | Capital Cost | Annual<br>Operating Cost |  |  |  |  |
| With ES and PV                   | 210                        | \$2,007,500  | \$389,000                | \$1,614,500  | \$343,000                |  |  |  |  |
| Without ES and PV                | 1,060                      | \$1,719,500  | \$514,500                | \$1,713,000  | \$500,500                |  |  |  |  |
| Difference                       |                            | -\$288,000   | \$125,500                | \$98,500     | \$157,500                |  |  |  |  |



### **Business Case Analysis**

- Cases for urban and rural complexes using 50 kW and 350 kW chargers were analyzed using tool developed by Atlas Public Policy
- In the cases studied, break-even cost per kWh was calculated:

| Financing Period                              | Customer Cost metric               | Minimum<br>Rural<br>Six 50-kW | Minimum<br>Urban<br>Six 50-kW | Ultimate<br>Rural<br>Six 350-kW | Ultimate<br>Urban<br>Six 350-kW |
|-----------------------------------------------|------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 5 Years<br>Equivalent Gasoline Cost (\$/gal)* | Electricity Cost (\$/kWh)          | \$0.88                        | \$0.93                        | \$1.04                          | \$1.01                          |
|                                               | Equivalent Gasoline Cost (\$/gal)* | \$7.54                        | \$7.91                        | \$8.91                          | \$8.65                          |
| 10 Years                                      | Electricity Cost (\$/kWh)          | \$0.69                        | \$0.73                        | \$0.77                          | \$0.76                          |
|                                               | Equivalent Gasoline Cost (\$/gal)* | \$5.91                        | \$6.25                        | \$6.60                          | \$6.51                          |

\* Based on 30 mpg vehicle

- Other revenue streams may be necessary
  - On-site sales (e.g. gas station model)
  - Investment through public and/or private partnership

#### \*\*\* CAUTION \*\*\*

Refinement of assumptions and design optimization strongly recommended



## **Response to Previous Reviewers' Comments**

• This project was not reviewed in previous years



#### **Collaboration and Coordination**

- INL is the lead on this project
- Electric Applications Incorporated
  - Developed ROM cost estimation tool
- Atlas Public Policy
  - Performed business case analysis



#### **Remaining Challenges and Barriers**

- Low-cost design of fast charging complexes requires understanding consumer charging demand, which is dependent upon many factors and requires more research
- DCFC complex design is location-specific and requires site-by-site optimization and coordination with the utility
- Impact of charging demand on the electric grid could be significant and should also be studied
- Electric utility engagement is required to determine whether rate structure can be or should be modified



### **Proposed Future Research**

- This project is complete
- A follow-on study has been launched to:
  - Improve assumptions for customer usage
  - Perform DCFC complex design optimization using sophisticated tools to minimize cost
  - Repeat business case analysis based on lowest-cost designs and considering a network of complexes
  - Engage electric utilities about demand charges (major component of operating cost)



#### Summary

- As BEV battery capacity and driving range increase, the importance of fast charging infrastructure also increases
- Design considerations were determined for high-power, multi-port DCFC complexes that could meet this need
- A case study based on current assumptions was developed for urban and rural DCFC complexes
  - Hypothetical charging complexes designed
  - Rough-order-of-magnitude cost estimates performed
  - Business case analyzed for 50 kW and 350 kW complexes
- Profitability of DCFC complexes is difficult given the assumptions from this case study
  - Further research is necessary



## **Technical Back-Up Slides**



#### Complex Design Parameters (w/ ES and PV)

| Demand Metric                                             | Mi                   | nimum                | Ultimate              |                       |  |
|-----------------------------------------------------------|----------------------|----------------------|-----------------------|-----------------------|--|
| Demand Metric                                             | Corridor             | Community            | Corridor              | Community             |  |
| Average vehicle charge energy per session (kWh)           | 80                   | 20                   | 80                    | 20                    |  |
| Average daily number of charge sessions per port          | 2.0                  | 6.9                  | 4.8                   | 16.5                  |  |
| Average daily number of charge sessions per complex       | 11.8                 | 41.2                 | 28.8                  | 99.2                  |  |
| Minimum load factor                                       | 30%                  | 30%                  | 30%                   | 30%                   |  |
| Performance Criteria                                      | Mi                   | nimum                | Ul                    | timate                |  |
| r er for mance Criteria                                   | Corridor             | Community            | Corridor              | Community             |  |
| Level of Service Requirements                             |                      |                      |                       |                       |  |
| Maximum number of vehicles charging simultaneously        | 3                    | 3                    | 3                     | 3                     |  |
| Maximum number of consecutive sets of vehicles            | 2                    | 2                    | 2                     | 2                     |  |
| Power Requirements                                        |                      |                      |                       |                       |  |
| Peak DCFC unit power output to PEV (kW/port)              | 50                   | 50                   | 350                   | 350                   |  |
| Peak coincident DCFC unit power to PEVs (kW/complex)      | 150                  | 150                  | 1,050                 | 1,050                 |  |
| Complex "house" load demand from grid (kW) <sup>(1)</sup> | 10                   | 10                   | 10                    | 10                    |  |
| Peak ES system power output (kW)                          | 50                   | 50                   | 850                   | 850                   |  |
| Peak power drawn from the grid (kW)                       | 110                  | 110                  | 210                   | 210                   |  |
| Energy Consumption Based On Monthly Consumer Dema         | and                  |                      |                       |                       |  |
| Energy consumed by PEVs (kWh/mo)                          | 28,713               | 25,063               | 70,080                | 60,347                |  |
| Complex "house" load factor                               | 70%                  | 70%                  | 70%                   | 70%                   |  |
| Energy consumed by "house" load (kWh/mo)                  | 5,110                | 5,110                | 5,110                 | 5,110                 |  |
| Total energy consumed by complex (kWh/mo)                 | 33,823               | 30,173               | 75,190                | 65,457                |  |
| Grid energy consumed (kWh/mo)                             | 24,090               | 24,090               | 45,990                | 45,990                |  |
| PV energy generated (kWh/mo)                              | 9,733 <sup>(2)</sup> | 6,083 <sup>(3)</sup> | 29,200 <sup>(4)</sup> | 19,467 <sup>(5)</sup> |  |
| Percent of energy generated by PV                         | 29%                  | 20%                  | 39%                   | 30%                   |  |
| Energy Storage Requirements                               |                      |                      |                       |                       |  |
| ES capacity (kWh) <sup>(6)</sup>                          | 208                  | 52                   | 505                   | 126                   |  |

1 Complex "house" loads are the electrical loads required to operate the DCFC complex. These loads represent power/energy demand from the grid in addition to power/energy transferred to vehicles during charging.

2 40 kW of solar providing 8 equivalent hours of energy at full power per day

3 25 kW of solar providing 8 equivalent hours of energy at full power per day

4 120 kW of solar providing 8 equivalent hours of energy at full power per day

5 80 kW of solar providing 8 equivalent hours of energy at full power per day

6 ES capacity required to meet level of service requirements plus 30% additional capacity



# Capital and Operating Costs (w/ ES and PV)

|               | Cost Components With Energ                       | gy Storage | Minimum<br>Corridor<br>Six 50-kW | Minimum<br>Community<br>Six 50-kW | Ultimate<br>Corridor<br>Six 350-kW | Ultimate<br>Community<br>Six 350-kW |
|---------------|--------------------------------------------------|------------|----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|
| Capital costs | Engineering <sup>(A)</sup>                       |            | \$3,000                          | \$5,000                           | \$4,000                            | \$6,000                             |
|               | Permit <sup>(B)</sup>                            |            | \$1,000                          | \$3,000                           | \$1,500                            | \$4,500                             |
|               | Utility interconnection cost <sup>(C)</sup>      |            | \$20,000                         | \$20,000                          | \$20,000                           | \$20,000                            |
|               | Load center and meter section <sup>(D)</sup>     |            | \$5,500                          | \$5,500                           | \$5,500                            | \$5,500                             |
|               | AC/DC conversion <sup>(E)</sup>                  |            | \$100,000                        | \$100,000                         | \$200,000                          | \$200,000                           |
|               | ES system                                        |            | \$83,000 <sup>(F)</sup>          | \$21,000 <sup>(G)</sup>           | \$505,000 <sup>(H)</sup>           | \$126,000 <sup>(I)</sup>            |
|               | PV system                                        |            | \$8,000 <sup>(J)</sup>           | \$5,000 <sup>(K)</sup>            | \$24,000 <sup>(L)</sup>            | \$16,000 <sup>(M)</sup>             |
|               | DCFC unit hardware <sup>(N)</sup>                |            | \$150,000                        | \$150,000                         | \$1,050,000                        | \$1,050,000                         |
|               | Conduit and cables <sup>(O)</sup>                | \$10,000   | \$10,000                         | \$10,000                          | \$10,000                           |                                     |
|               | Concrete pads material and labor <sup>(1)</sup>  | \$15,000   | \$10,000                         | \$15,000                          | \$10,000                           |                                     |
|               | Accessory materials <sup>(Q)</sup>               |            | \$12,500                         | \$12,500                          | \$12,500                           | \$12,500                            |
|               | Site surface and underground work <sup>(R)</sup> |            | \$40,000                         | \$40,000                          | \$40,000                           | \$40,000                            |
|               | Fixed site improvements <sup>(S)</sup>           |            | \$40,000                         | \$40,000                          | \$40,000                           | \$40,000                            |
|               | Equipment installation costs <sup>(T)</sup>      |            | \$40,000                         | \$40,000                          | \$50,000                           | \$50,000                            |
|               | Project management                               |            | \$28,000 <sup>(U)</sup>          | \$22,000 <sup>(V)</sup>           | \$30,000 <sup>(U)</sup>            | \$24,000 <sup>(V)</sup>             |
|               | Total                                            |            | \$556,000                        | \$484,000                         | \$2,007,500                        | \$1,614,500                         |
|               | <b>Cost Components With</b>                      | Rate       | Minimu                           | <b>Minimum Capability</b>         |                                    | e Capability                        |
|               | Energy Storage                                   |            | Corridor                         | Community                         | Corridor                           | Community                           |
| Operational   | Grid demand                                      | \$12/kW    | \$1,320 <sup>(1)</sup>           | \$1,320 <sup>(1)</sup>            | \$2,520 <sup>(2)</sup>             | \$2,520 <sup>(2)</sup>              |
| costs         | Grid energy <sup>(3)</sup>                       | \$0.12/kWh | \$2,891 <sup>(4)</sup>           | \$2,891 <sup>(5)</sup>            | \$5,519 <sup>(6)</sup>             | \$5,519 <sup>(7)</sup>              |
|               | Site lease                                       | \$1/sq-ft  | \$6,000                          | \$6,000                           | \$6,000                            | \$6,000                             |
|               | Equipment warranty <sup>(8)</sup>                | 1%/mo      | \$3,410                          | \$2,760                           | \$17,790                           | \$13,920                            |
|               | Site maintenance <sup>(9)</sup>                  | \$50/unit  | \$450                            | \$450                             | \$450                              | \$450                               |
|               | Communications                                   | \$150      | \$150                            | \$150                             | \$150                              | \$150                               |
|               | TOTAL MONTHLY COST                               |            | \$14,221                         | \$13,571                          | \$32,428                           | \$28,558                            |

See next slide for notes



# Capital and Operating Costs (w/ ES and PV)

A Costs include civil, structural and electrical engineering and assume significant reuse of non-site specific work from others

- B Local permit and inspection fees
- C Utility interconnection costs include overhead line extension (2 poles) at distribution voltage and 300kVA distribution transformer
- D 600A load center with five fused disconnects and separate meter section with current transformers
- E AC/DC converter hardware at \$1.00/W
- F 208 kWh at 50 kW supplied by ES; ES cost of \$400/kWh, ES sized 30% over required energy
- G 52 kWh at 50 kW supplied by ES; ES cost of \$400/kWh, ES sized 30% over required energy
- H 505 kWh at 850 kW supplied by ES; ES cost of \$1,000/kWh as a result of high power requirement, ES sized 30% over required
- I 126 kWh at 850 kW supplied by ES; ES cost of \$1,000/kWh as a result of very high power requirement, ES sized 30% over required
- J 40 kW of solar providing 8 equivalent hours of energy at full power, costing \$200/kW
- K 25 kW of solar providing 8 equivalent hours of energy at full power, costing \$200/kW
- L 120 kW of solar providing 8 equivalent hours of energy at full power, costing \$200/kW
- M 80 kW of solar providing 8 equivalent hours of energy at full power, costing \$200/kW
- N DCFC unit hardware only at \$0.50/W (DC/DC system)
- O Material only for underground and exposed conduit and all power and control cabling
- P Pads and curbs based on DCFC complex configuration (corridor includes travel costs)
- Q Materials include lighting, landscape plants and irrigation materials, signage and bollards
- R Costs include grading, trenching/boring, pavement cutting, backfill and surface patching
- S Costs include lighting and signage installation, pavement striping, bollard and irrigation system installation, and landscaping planting
- T Cost include DCFC and ancillary electrical equipment installation
- U 15% of material, labor and subcontract costs (no ES, PV or DCFC equipment cost included)
- V 12% of material, labor and subcontract costs (no ES, PV or DCFC equipment cost included)

1 Peak monthly demand = 100 kW from DCFC plus 10 kW complex "house" loads. Higher power required to meet service level requirements provided by ES

2 Peak monthly demand = 200 kW from DCFC plus 10 kW complex "house" loads. Higher power required to meet service level requirements provided by ES

- 3 Load factor of 30% requires 2.0 charges of 80 kWh per port per day, including use of 40% of energy supplied by PV
- 4 Load factor of 30% requires 6.9 charges of 20 kWh per port per day, including use of 40% of energy supplied by PV
- 5 Load factor of 30% requires 4.8 charges of 80 kWh per port per day, including use of 25% of energy supplied by PV
- 6 Load Factor of 30% requires 16.5 charges of 20 kWh per port per day, including use of 25% of energy supplied by PV
- 7 1% of major equipment cost (ES, PV, DCFC, and AC/DC)
- 8 Includes energy from complex "house" loads



#### **Complex Design Parameters (w/out ES and PV)**

| Demand Metric                                        |          | Minimum |         |        |      | Ultimate |           |
|------------------------------------------------------|----------|---------|---------|--------|------|----------|-----------|
| Demand Wettic                                        |          | Cori    | ridor   | Commu  | nity | Corridor | Community |
| Average vehicle charge energy per session (kWh)      |          | 80      |         | 20     |      | 80       | 20        |
| Average daily number of charge sessions per port     |          | 2       | 2.0 6.9 |        |      | 4.8      | 16.5      |
| Average daily number of charge sessions per compl    | lex      | 11      | .8      | 41.2   |      | 28.8     | 99.2      |
| Resulting load factor                                |          | 27      | 7%      | 24%    |      | 9%       | 8%        |
| Performance Criteria                                 |          | Mini    |         |        |      | Ultin    |           |
|                                                      | Corrid   | lor     | Com     | munity | C    | orridor  | Community |
| Level of Service Requirements                        |          |         |         |        |      |          |           |
| Maximum number of vehicles charging simultaneously   | 3        |         |         | 3      |      | 3        | 3         |
| Maximum number of consecutive sets of vehicles       | None     | e       | Ν       | Jone   |      | None     | None      |
| Power Requirements                                   |          |         |         |        |      |          |           |
| Peak DCFC unit power output to PEV (kW/port)         | 50       |         | 50      |        |      | 350      | 350       |
| Peak coincident DCFC unit power to PEVs (kW/complex) | 150      |         |         | 150    |      | 1,050    | 1,050     |
| Complex "house" load demand from grid (kW)           | 10       |         |         | 10     |      | 10       | 10        |
| Peak ES system power output (kW)                     | 0        |         |         | 0      |      | 0        | 0         |
| Peak power drawn from the grid (kW)                  | 160      | 50 1    |         | 160    |      | 1,060    | 1,060     |
| Energy Consumption Based On Monthly Consum           | mer Dema | and     |         |        |      |          |           |
| Energy consumed by PEVs (kWh/mo)                     | 28,71    | 3       | 25      | 5,063  | ,    | 70,080   | 60,347    |
| Complex "house" load factor                          | 70%      |         | 7       | 70%    |      | 70%      | 70%       |
| Energy consumed by "house" load (kWh/mo)             | 5,100    | )       | 5       | ,100   |      | 5,100    | 5,100     |
| Total energy consumed by complex (kWh/mo)            | 33,82    | 3       | 30      | 0,173  | ,    | 75,190   | 65,457    |
| Grid energy consumed (kWh/mo)                        | 33,82    | 3       | 30      | 0,173  | ,    | 75,190   | 65,457    |
| PV energy generated (kWh/mo)                         | 0        |         |         | 0      |      | 0        | 0         |
| Percent of energy generated by PV                    | 0%       |         |         | 0%     |      | 0%       | 0%        |
| Energy Storage Requirements                          |          |         |         |        |      |          |           |
| ES capacity (kWh)                                    | 0        |         |         | 0      |      | 0        | 0         |



Ultimate

Community

\$41,725

#### Capital and Operating Costs (w/out ES and PV)

Minimum

Minimum

\$13,791

\$14,220

\$42,893

Ultimate dan Cin

|               | Cost Components With Ene                     | ergy Storage                                    | Corridor<br>Six 50-kW     | Community<br>Six 50-kW       | Corridor Six<br>350-kW      | Community<br>Six 350-kW |
|---------------|----------------------------------------------|-------------------------------------------------|---------------------------|------------------------------|-----------------------------|-------------------------|
| Capital costs | Engineering <sup>(1)</sup>                   |                                                 | \$3,000                   | \$5,000                      | \$4,000                     | \$6,000                 |
|               | Permit <sup>(2)</sup>                        | \$1,000                                         | \$3,000                   | \$1,500                      | \$4,500                     |                         |
|               | Utility interconnection cost                 |                                                 | \$20,000 <sup>(3)</sup>   | \$20,000 <sup>(3)</sup>      | \$41,500 <sup>(4)</sup>     | \$41,500 <sup>(4)</sup> |
|               | Load center and meter section                |                                                 | \$5,500 <sup>(5)</sup>    | \$5,500 <sup>(5)</sup>       | \$15,000 <sup>(6)</sup>     | \$15,000 <sup>(6)</sup> |
|               | AC/DC conversion <sup>(7)</sup>              |                                                 | \$0                       | \$0                          | \$0                         | \$0                     |
|               | ES system <sup>(8)</sup>                     |                                                 | \$0                       | \$0                          | \$0                         | \$0                     |
|               | PV system <sup>(9)</sup>                     |                                                 | \$0                       | \$0                          | \$0                         | \$0                     |
|               | DCFC unit hardware                           | \$180,000 <sup>(10)</sup>                       | \$180,000 <sup>(10)</sup> | \$1,470,000 <sup>(11</sup> ) | \$1,470,000 <sup>(11)</sup> |                         |
|               | Conduit and cables <sup>(12)</sup>           | \$12,500                                        | \$12,500                  | \$12,500                     | \$12,500                    |                         |
|               | Concrete pads material and labor             | \$15,000                                        | \$10,000                  | \$15,000                     | \$10,000                    |                         |
|               | Accessory materials <sup>(14)</sup>          | \$12,500                                        | \$12,500                  | \$12,500                     | \$12,500                    |                         |
|               | Site surface and underground wor             | te surface and underground work <sup>(15)</sup> |                           | \$40,000                     | \$40,000                    | \$40,000                |
|               | Fixed site improvements <sup>(16)</sup>      | \$40,000                                        | \$40,000                  | \$40,000                     | \$40,000                    |                         |
|               | Equipment installation costs <sup>(17)</sup> | \$35,000                                        | \$35,000                  | \$35,000                     | \$35,000                    |                         |
|               | Project management                           | \$27,500 <sup>(18)</sup>                        | \$22,000 <sup>(19)</sup>  | \$32,500 <sup>(18)</sup>     | \$26,000 <sup>(19)</sup>    |                         |
|               | Total                                        | \$392,000                                       | \$385,500                 | \$1,719,500                  | \$1,713,000                 |                         |
|               | Cost Components Without                      | Rate                                            |                           | Capability                   |                             | Capability              |
|               | Energy Storage                               |                                                 | Corridor                  | Community                    | Corridor                    | Community               |
| Operational   | Grid demand                                  | \$12/Kw                                         | \$1,920 <sup>(1)</sup>    | \$1,920 <sup>(1)</sup>       | \$12,720 <sup>(2)</sup>     | \$12,720 <sup>(2)</sup> |
| costs         | Grid energy <sup>(8)</sup>                   | \$0.12/kWh                                      | \$4,050 <sup>(3)</sup>    | \$3,621 <sup>(4)</sup>       | \$9,023 <sup>(5)</sup>      | \$7,855 <sup>(6)</sup>  |
|               | Site lease                                   | \$1/sq-ft                                       | \$6,000                   | \$6,000                      | \$6,000                     | \$6,000                 |
|               | Equipment warranty                           | 1%                                              | \$1,800                   | \$1,800                      | \$14,700                    | \$14,700                |
|               | Site maintenance                             | \$50/unit                                       | \$300                     | \$300                        | \$300                       | \$300                   |
|               | Communications                               | \$150                                           | \$150                     | \$150                        | \$150                       | \$150                   |
|               |                                              |                                                 |                           |                              |                             |                         |

- -

With En

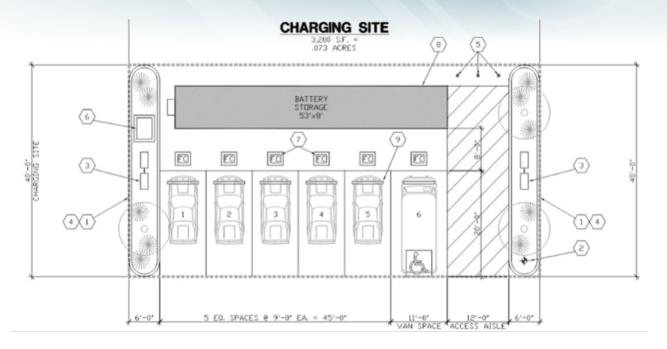
TOTAL MONTHLY COST

See next slide for notes



# Capital and Operating Costs (w/out ES and PV)

A Costs include civil, structural and electrical engineering and assume significant reuse of non site specific work from other sites


- B Local permit and inspection fees
- C Utility interconnection costs include overhead line extension (2 poles) at distribution voltage and 300 kVA distribution transformer
- D Utility interconnection costs include overhead line extension (2 poles) at distribution voltage and 2,000 kVA distribution transformer
- E 600A load center with five fused disconnects and separate meter section with current transformers
- F 2,000A load center with five fused disconnects and separate meter section with current transformers
- G No AC/DC converter installed
- H No ES installed
- I No PV installed
- J DCFC unit hardware only at \$0.60/W (AC/DC system)
- K DCFC unit hardware only at \$0.70/W (AC/DC system)
- L Material only for underground and exposed conduit and all power and control cabling
- M Pads and curbs based on DCFC complex configuration (corridor includes travel costs)
- N Materials include lighting, landscape plants and irrigation materials, signage and bollards
- O Costs include grading, trenching/boring, pavement cutting, backfill and surface patching
- P Costs include lighting and signage installation, pavement striping, bollard and irrigation system installation, and landscaping planting
- Q Cost include DCFC and ancillary electrical equipment installation
- R 15% of material, labor and subcontract costs (no DCFC equipment cost included)
- S 12% of material, labor and subcontract costs (no DCFC equipment cost included)

1 Peak monthly demand = 200 kW from DCFC plus 10 kW complex "house" loads. Higher power required to meet service level requirements provided by ES

2 Peak monthly demand = 1,400 kW from DCFC plus 10 kW complex "house" loads. Higher power required to meet service level requirements provided by ES

- 3 Load factor of 30% requires 2.4 charges of 80 kWh per port per day
- 4 Load factor of 30% requires 9.6 charges of 20 kWh per port per day
- 5 Load factor of 30% requires 15.9 charges of 80 kWh per port per day
- 6 Load factor of 30% requires 63.6 charges of 20 kWh per port per day
- 7 1% of DCFC equipment cost
- 8 Includes energy from complex "house" loads





#### **ISLAND EXHIBIT**

SCALE: 1"=10.00'

\*\* ISLAND SCHEME ASSUMES FLUSH CONDITION AT PAVING WITH NO SIDEWALK RAMPING

#### **KEY NOTES**

- 1 NEW LANDSCAPED PLANTER AREA
- 2 NEW FIRE HYDRANT
- 3 NEW PARKING LOT SITE LIGHTING
- (4) NEW 6" HIGH CONCRETE CURB
- 5 8" DIAMETER CONCRETE FILLED PIPE BOLLARD TYPICAL
- 6 NEW PAD MOUNTED ELECTRICAL TRANSFORMER
- NEW FAST CHARGER DISPENSER FOR ELECTRIC VEHICLES TYPICAL OF 6 LOCATIONS
- 8 NEW BATTERY STORAGE CONTAINER
- 9 NEW CONCRETE WHEEL STOP TYPICAL OF 6 LOCATIONS

#### SITE DESIGN CRITERIA

| CHARGING SITE AREA:                          | 3,200 S.F. (.073 ACRES)                      |
|----------------------------------------------|----------------------------------------------|
| CHARGER DISPENSER PARKING<br>PROVIDED:       | 6 SPACES INCLUDING 1 VAN<br>ACCESSIBLE SPACE |
| TYPICAL PARKING SPACE SIZE:                  | 9'-0" WIDE X 20'-0" LONG                     |
| ACCESSIBLE VAN SPACE SIZE:                   | 11'-0" WIDE X 20'-0" LONG                    |
| ACCESSIBLE VAN AISLE WIDTH:                  | 9'-0" MINIMUM WIDTH                          |
| DRIVE AISLE – FOR TWO WAY<br>TRAFIC ON-SITE: | 24'-0" MINIMUM WIDTH                         |