#### Global Algae Innovations Algae Solutions to Global Dilemmas

Dave Hazlebeck May 23, 2017 Algae Cultivation for Carbon Capture and Utilization U.S. Department of Energy, Bioenergy Technologies Office



# Algae CC Rural Rejuve

#### Coal competitiveness

- Algae industry can pay for CO<sub>2</sub> and cost of capture/delivery
- CO<sub>2</sub> becomes coproduct
- Algae, High tech farming
- Economic boon
- Full spectrum of jobs
- Large markets: protein, fuel, polymers

USA needs to invest so we are the world leader



40-50x revenue per acre will transform to rural economy & standard of living



## Algae Industry: Solution to the Protein Crisis



FAO projections

- Need 3x aquaculture protein
- Need 2x other protein
- Crop yield increase ~1-1.5%/year

Algeria (4), Saudi Arabia (1)

Mauritania (1), Sudan (1), Yemen (300+)

Tunisia (1) Egypt (800+) - Iraq (29), Bahrain (31)

Tunisia (300+) — 💦

Mozambique (13

2010

India (1).

Sudan (1)

2008

Libya (10000+) - Syria (900+)

Oman (2), Morocco (5)

Uganda (5)

2012

#### 2% of crop land in algae solves problem





Fisheal

## Algae Industry: Large Part of Environmental Solutions

- Leading cause of deforestation and habitat loss is food production
- Leading cause of global water impairment is agricultural run-off
- Agriculture accounts for 25% of global greenhouse gas emissions

|              | CCS Energy Sector Emissions Mitigation |     |     |     |     |     |     |  |
|--------------|----------------------------------------|-----|-----|-----|-----|-----|-----|--|
|              | 0%                                     | 25% | 35% | 45% | 55% | 65% | 75% |  |
| BAU          | 624                                    | 563 | 537 | 514 | 491 | 470 | 445 |  |
| BioEnergy    | 583                                    | 525 | 500 | 478 | 456 | 436 | 413 |  |
| Alg-Feed 10% | 513                                    | 458 | 435 | 415 | 395 | 376 | 355 |  |
| Alg-Feed 20% | 496                                    | 442 | 418 | 398 | 378 | 359 | 337 |  |
| Alg-Feed 30% | 484                                    | 429 | 405 | 385 | 364 | 345 | 323 |  |
| Alg-Feed 40% | 473                                    | 417 | 393 | 372 | 351 | 332 | 310 |  |
|              |                                        |     |     |     |     |     |     |  |

Walsh et al. Carbon Balance Manage (2015) 10:26







## Energy Scale CCU Products Required

| Product                                                     | Value<br>(\$/mt) | CO <sub>2</sub> Utilization<br>(550 MW Coal Plants) |  |
|-------------------------------------------------------------|------------------|-----------------------------------------------------|--|
| Pigments, Nutriceuticals, Cosmetics,<br>Specialty chemicals | 4,000 - 10,000   | 0.3                                                 |  |
| Consumer polymers, Food protein                             | 1,000 - 3,000    | 25                                                  |  |
| Bulk polymers, Aquaculture feed,<br>Specialty feeds         | 600 – 1,000      | 200                                                 |  |
| Animal feed & Transportation fuel                           | 350 – 550        | 500                                                 |  |
| Transportation fuel                                         | 250 – 350        | 8000                                                |  |





# Scalable Technologies (550 MW supports 20-30,000 algae acres)





We seem to have a few problems going from lab-scale to full-scale production

20,000-acre facility control points Conventional CC or direct: 40,000 Global Algae Absorber : 1



#### Scalable Technologies (Continued)





# Algae Flue Gas Utilization Obstacles

1. Achieve low cost CO<sub>2</sub> supply

- Capture & Storage
- Distribution & control
- Energy use
- 2. Capture  $CO_2$  when algae not growing
- 3. Prevent ground level flue gas release



## Key Attributes of Algae CO<sub>2</sub> Supply Options

| System Attribute                      | Bubble Flue<br>Gas | Carbon<br>Capture | Global<br>Algae<br>Innovations | Direct Air<br>Capture |  |
|---------------------------------------|--------------------|-------------------|--------------------------------|-----------------------|--|
| Cost of CO <sub>2</sub> supply        | \$\$\$             | \$\$\$            | \$                             | \$                    |  |
| CO <sub>2</sub> storage               | N/A                | \$\$              | \$                             | N/A                   |  |
| Gas distribution                      | Miles              | Miles             | None                           | None                  |  |
| Control points                        | 40,000             | 40,000            | 1                              | None                  |  |
| Gas pressure                          | 2-10 psi           | 0.1 / 900 psi     | 0.1 psi                        | N/A                   |  |
| Prevent ground level flue gas release | \$\$               | 0                 | 0                              | N/A                   |  |
| Capture when algae is not growing     | No                 | Yes               | Yes                            | No                    |  |



# Global Algae Innovations CO<sub>2</sub> Supply System





# All algae cultivated on CO<sub>2</sub> supplied from power plant flue gas

Raceways Power plant stack Flue gas supply & return CO<sub>2</sub> absorber Harvest system Recycled media pond Carbonated media pond



# Power Plant Flue Gas CO<sub>2</sub> Supply



- 50' tall, 5' diameter absorber
- Power plant off-gas returned to stack after CO<sub>2</sub> recovery
- For past three years, all CO<sub>2</sub> for growth from power plant flue gas





# All CO<sub>2</sub> Supplied From Power Plant Flue Gas



- 24 hour per day CO<sub>2</sub> capture
- Store in media: 80-90% capture limit instead of 5%
- Very low energy: 2.5" water pressure drop on flue gas
- Eliminates need for gas distribution or controls





# Conclusions

- Algae CCU can lower electric rates
- Addresses some of world's largest markets
- Re-establish US as bread basket of the world
- Full-scale implementation would create economic boon that transforms rural standards of living and job quality
- Scalable and economic approaches have been demonstrated at reasonable scale
- USA investment needed to maintain world leadership



# Thank you



