

Scalable, Economic Hydrogen Generation from Natural Gas

H2@ Scale Workshop May 23-24, 2017 University of Houston

Co-authors:

G. Subbaraman, J. Mays & R. Stanis (GTI)

R. Dennis (DOE-NETL)

Scalable, Economic H₂ Generation from NG

Background

Outline

- Compact Hydrogen Generator Description
- Cases Compared for power generation
- Key Assumptions & Metrics
- Results
- Technology Maturation & Issues
- Development Plan
- Summary & Recommendations

Background & Objective

Scalable, Economic H₂ Generation from NG

- GTI is piloting (.02 MMSCFD) a Compact Hydrogen Generator (CHG) technology for large-scale H₂ production (>2 MMSCFD)
 - Cost competitive against current Steam Methane Reformer (SMR) technology in traditional refinery and chemicals applications
- CHG has an inherent ability to capture CO₂
 - Enables cost-effective power generation with pre-combustion capture
 - Power generation can be accomplished with current-generation gas turbines
- DOE (FE) has been involved in development of hydrogen turbines for Integrated Gasification Combined Cycle (IGCC) plants to improve performance and reduce emissions
- Objective: Perform a techno-economic evaluation of current NG-fueled technologies to produce power with CO₂ capture (i.e., NGCCs and SMRs) and CHG with a conventional and advanced hydrogen turbine

CHG Process Chemistry

Scalable, Economic H₂ Generation from NG

The SER process avoids the external heating of the SMR process. This is achieved by the exothermic nature of the carbonation reaction. Additionally, the SER process forces the water-gas shift reaction to occur in situ, thus enabling the heat from the water-gas shift reaction to be utilized within the

Chemistry

hydrogen reactor.

\	•	
	SMR Chemistry	
Hydrogen	Reforming $CH_4 + H_2O \rightarrow 3H_2 + CO$	+206 KJ
Generation Reactions	WGS $CO + H_2O \rightarrow H_2 + CO_2$	-37.8KJ
Neactions	Combined $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$	+206 KJ/-37.8KJ
Sorbent	SER Process Chemistry	
Regeneration	$CH_4 + 2H_2O + CaO \rightarrow 4H_2 + CaCO_3$	None
Reaction	CaCO ₃ → CaO + CO ₂	+178 KJ

Closed loop operation produces hydrogen and regenerates calcium oxide

Heat

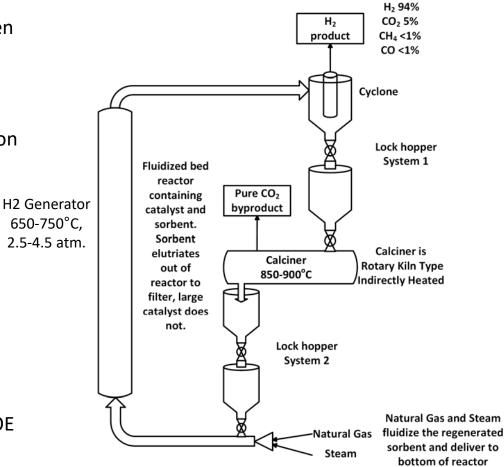
CHG: Principles of Operation

Scalable, Economic H₂ Generation from NG

Product

- System for large-scale production of hydrogen from natural gas and other feedstock
- Replaces Steam Methane reformer

Benefits

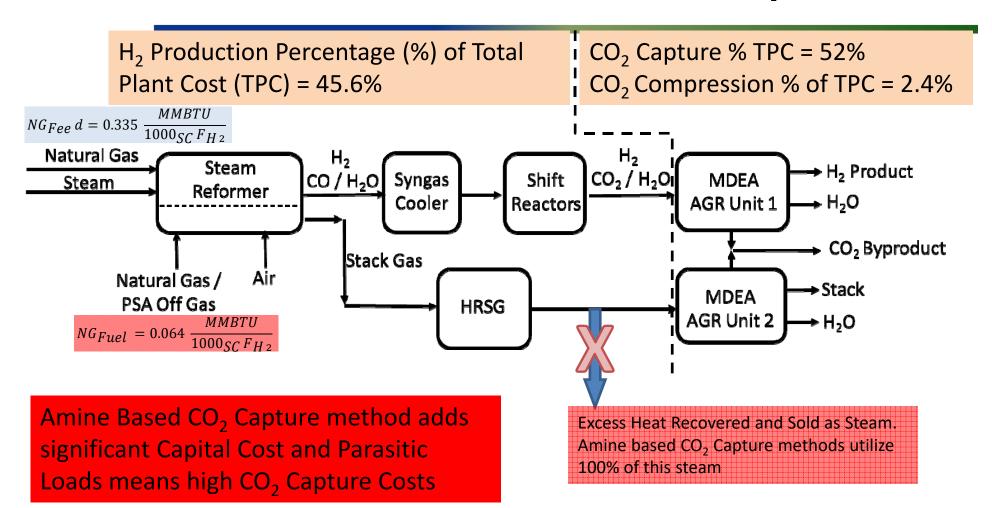

- Compact one-step process, 90% size reduction
- 20-40% lower equipment costs
- 10-20% increased H₂ efficiency
- Concentrated CO₂ byproduct

Markets

- H₂ for refineries, fertilizer and chemicals
- H₂ for field upgrading of oil and oil sands
- H₂ for power with low-cost CO₂ capture

Status

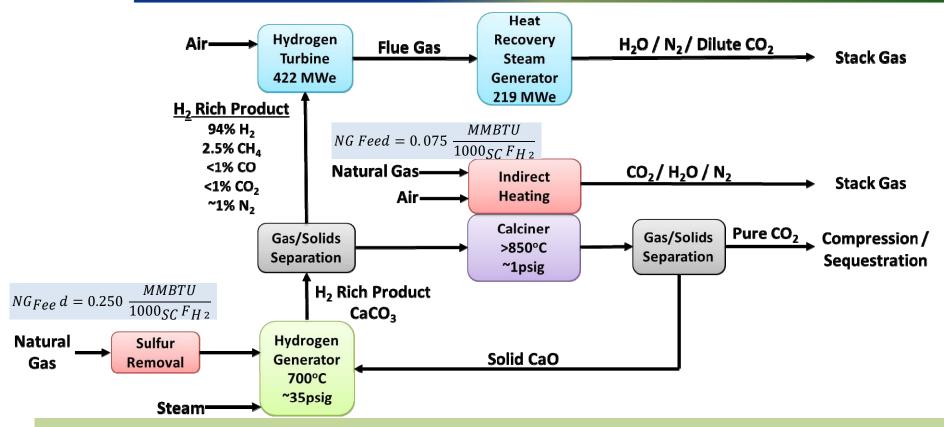
- Proof of Concept tests completed
- Pilot (20 MCFD) testing in progress under DOE contract
- Demo plant defined at 5.0 MMSCFD



CO₂ Capture with SMR

Scalable, Economic H₂ Generation from NG

Reference diagram according to NETL 2010/1434. PSA added for increased hydrogen purity



CO₂ Capture with CHG

Scalable, Economic H₂ Generation from NG

Sorbent Enhanced Reforming captures CO₂ in a solid, enabling release in a pure form during sorbent regeneration and eliminating the expensive amine system

^{*}PSA added (optional) for increased hydrogen purity

Study Cases Compared

Scalable, Economic H₂ Generation from NG

						7					
Case 1	Case	2	I	Case 3		ij.	Case 4		Cas	Case 5	
Natural Gas Turbine Combined Cycle (NGCC)	Natural Gas Turbine Combined Cycle (NGCC)	CO ₂ Capture	Steam Methane Reformer (SMR)	CO ₂ Capture	Hydrogen To Power With Gas Turbine Combined Cycle	11 11 11 11 11	GTI Compact Hydrogen Generator (CHG)	Hydrogen to Power with Gas Turbine Combined Cycle	GTI Compact Hydrogen Generator (CHG)	Adv. Hydrogen Turbine Combined Cycle	
No CO ₂ Capture (Reference)	NGCC w/Post Combu Captur	stion	Evaluate Citation: DOE/NE		,		CO ₂ Intrinsically Separated and (Captured)		CO ₂ Intrinsically Separated and (Captured)		
	(Citation: DOE/NETL-2011/1723			T			Citation GT2016			
	CHG Technology co-produces pure Conly post-processing is compression						. 2				

Techno-Economics

Scalable, Economic H₂ Generation from NG

~Assumptions & Metrics

Assumptions

- 1. Overall
 - 1. 90% CO₂ removal
 - 2. Natural gas at \$6.13/MMBTU HHV
 - 3. H_2 purity =99.99%
 - 4. 10.3% Capital Charge
 - 5. CO_2 TS&M = \$4/MWH 559MW basis
 - 6. 2.72 BBL/MT CO₂ EOR ratio
 - 7. 2 Turbines x 1 SSTG
- 2. F-Class turbine NGCC
 - 1. 641 MWe gross power
 - 2. Same Heat rate (HHV)
- 3. Advanced H2 Turbine (793 MWe)
 - 1. Pressure Ratio = 23.8
 - 2. $\eta_c/\eta_t = 93\%/90\%$
 - 3. Turbine Inlet Temp = 2640°F
 - 4. Steam Cycle Efficiency = 39.9%

<u>Metrics</u>

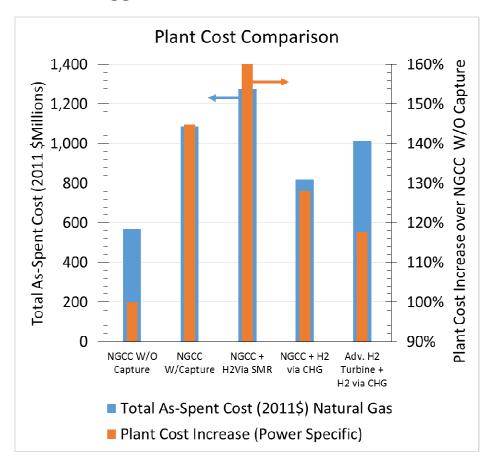
- 1. Cost of Electricity (COE)
- 2. Capital Investments
- 3. CO₂ Emissions
- 4. CO₂ Capture cost (\$/MT)
- 5. Plant Efficiency (LHV)
- 6. Sensitivity to Fuel Price

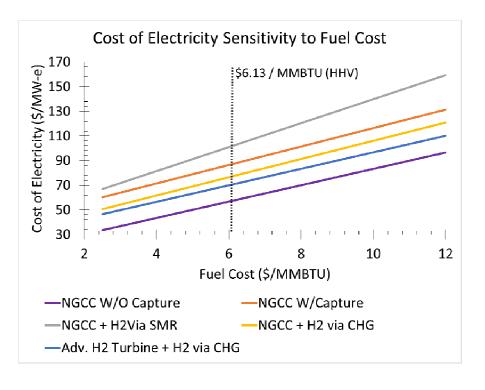
Results

Scalable, Economic H₂ Generation from NG

	NGCC w/o Capture	NGCC w/ Capture	H₂ Via SMR HTCC	H₂ via CHG HTCC	CHG w/Adv. H ₂ Turbine HTCC
Total Plant Power (MW)	630	559	596	604	761
Percent of CO ₂ Captured	0%	90%	90%	90%	90%
Total Plant Cost, Capital Costs (\$M)	431	828	949	623	771
Total Overnight Cost (\$M)	525	1,008	1,156	759	938
Total As-Spent Cost (\$M)	567	1,087	1,247	818	1012
Annual Costs (excluding TS&M)(\$M)	270	347	433	331	384
COE (\$/MWh) (including TS&M)	58	87	101	77	73
Plant Efficiency (%) – LHV basis	56.93	50.48	38.84	51.06	56.41
Cost of CO ₂ capture (\$/MT)	N/A	47	82	40	33
Total CO ₂ Emitted (MT/day)	5,394	492	682	526	533
BBL of Oil Recovered per Day	N/A	12,041	16,700	12,878	13,059

CHG-based power via hydrogen with pre-combustion capture offers lower COE than:
(1) SMR and (2) NGCC with post-combustion capture


Impact of CAPEX and Fuel Costs



Scalable, Economic H₂ Generation from NG

The biggest cost driver is the CAPEX

- COE is proportional to fuel costs
- Plant efficiency effects slope

Component Technology TRLs

Scalable, Economic H₂ Generation from NG

- Gas Turbine and HRSG system TRL 9
- 2. Advanced H₂ Gas Turbine –TRL 4

 DOE (FE) program is currently working towards 3100°F turbine inlet temperature, applicable to H2 and NG fuels. Supports IGCC and NGCC platforms with 65% combined cycle efficiency
- 3. CHG System TRL 4
 DOE (EERE) currently supporting technology development by updating pilot plant with indirect-fired, atmospheric calciner
- 4. Indirect-fired Atmospheric Calciner TRL 6
- High Temperature lock hoppers TRL 4Will be developed as part of the CHG System
- 6. CO₂ Capture and compression TRL 6

Maturing component TRLs & Operation of components as a system requires demonstration

Summary & Recommendations

Scalable, Economic H₂ Generation from NG

- GTI's Compact Hydrogen Generator (CHG) offers a cost-effective approach to power generation with pre-combustion capture
 - Approx. 19% improvement in COE over NGCC and 30% over SMRs
- CHG is being matured through a DOE (EERE)-funded Pilot program
- Extending technology elements developed for hydrogen turbines by DOE (FE) will further improve the value proposition for CHG-based power with capture
- A novel variant would enable lower electricity production, enabling excess
 H₂ to support the hydrogen grid concept
- Recommend initiating a phased program to: further define the system; determine associated component maturities; re-validate cost-benefits; and, develop and demonstrate technology