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DOE Grid Modernization Laboratory Consortium (GMLC)
project 1.4.2 “Definitions, Standards and Test Procedures for
Grid Services from Devices”

DOE Fuel Cell Technologies Office (FCTO) project “Dynamic
Modeling and Validation of Electrolyzers in Real Time Grid
Simulation”
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Devices (DERSs) Grid Services

Responsive, flexible end-use loads

» Peak load management (capacity)
» Water heaters
» Refrigerators » Energy market price response
> Air conditioners (wholesale energy cost)
» Commercial rooftop units (RTUs) » Capacity market dispatch (market value)
» Commercial refrigeration < - lati cet val
- Guimmarda] Felifine requency regulation (market value)
» Electric vehicles (charging only) » Spinning reserve (market value)
»| Electrolyzers Bl (e
Storage
8 : » Artificial inertia (new)
» Battery / inverter systems
» Thermal storage systems » Distribution voltage management
» Electric vehicles (full vehicle-to-grid) (new; e.g., PV impacts management)

Distributed generation
» Photovoltaic solar (PV) / inverter systems
» Fuel cells
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 Hydrogen production and storage during excess generation from renewables or
traditional energy sources.

 Hydrogen can provide grid services




U.S. DEPARTMENT OF Energy EffICIency &

H2 @Scale Relevance ENERGY | Renewable Energy

Fuel Cell Technologies Office | 5

* Current activities - role of hydrogen refueling stations in the
electricity grid and renewable energy assimilation

e H2@Scale has a longer term vision with potential benefits of
hydrogen to the_energy nexus
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Dynamic Characteristics: Ramp-up anc

Ramp-down Test

Ramp-down Tests

— from 100% to: 75%, 50% and
25% of rated power

* Ramp-up Tests .

— from 25% to: 50%, 75% and
100% of rated power

60 T T T T - 6.0 60 6.0
50 e - 5.0 50 - - 50
|
- 20 : 40 Current 25-100% - 20 | 40 ——— Current 100-75%
E ‘ Current 50-100% g Current 100-50%
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5 20 | L 20 +19% Max Current 3 20 20 ™ +1% Max Current
1 = = Trigger 25-100% - = Trigger 100-75%
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0+ i - 0.0 0 L 00
0 0.025 005 0075 0.1 0.125 015 0175 0.2 0 0.05 0.1 0.15 0.2

Time (seconds) Time (seconds)

Ramp-up and ramp-down response of a PEM electrolyzer [Ref. 1]

PEM electrolyzer

Electrical Power 40 kW

Rated Current 155 A per stack

Stack Count 3
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* Power set-point variation to examine Demand Response

— quantification of rate of rapid load change and demand response
— tested with SCADA system — inherent delay of 1 second

R

Power
3
T
E
E;;

| -u J “ h-
A= {[ ==actual =1
- =——=requested
0
0 20 40 100 120

60 80
time(s)

INL & NREL testing of a 120kW electrolyzer
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e Peak capacity management

— deploying fleets of electrolyzers to consistently and reliably reduce critical
peak loads within a defined region or location on the grid

* Energy market price response

— fleets of electrolyzers consume energy when prices are low and defer
consumption (set energy free) when prices are high

Regulation

— operating point adjustment counteracts short-term changes in electricity use
that might affect the stability of the power system

* Spinning Reserve

— by reducing its power consumption fleets of electrolyzers can support the
event when loss of generation unit in the grid occurs
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* Ramping

— analogue to generator, fleets of electrolyzers start and stop on command,
while the “ramp rate” is the rate at which they can increase or decrease
consumption

Artificial inertia

— fleets of electrolyzers regulate active power consumption in response
rate of change of frequency

Distribution voltage management

— upon detecting the voltage deviations (self-sensing and/or receipt of external
measurement signals) fleets of electrolyzers adjust the net load in the form of
their reactive and/or real power components

 Autonomous grid service responses
— additional (high-level) controller enables grid services in “stand-alone” mode
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e Purely resistive load, supplied from a DC source (power
converter)

* Very high rate of change and flexibility in setting power
operating points

* Capable of sensing deviations in power systems, capable of
adjusting their operating points to support the grid (fleets of
electrolyzers)

* Frequency and voltage support by reducing/increasing power
consumption
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* Objective: Validate the benefits of hydrogen electrolyzers
through grid services and hydrogen sale to fuel cell vehicles

for full-scale deployment.

— Characterization of the potential and highest economic value based on the
needs of multiple stakeholders for specific grid regions

— Demonstration of the reliable, fast-reacting performance of hydrogen-
producing electrolyzers for at-scale energy storage devices

— Verification of the communications and controls needed for successful
participation in electricity markets and DR programs and ancillary services,
leading to additional revenue and reduced hydrogen production cost
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Eouaeton Power Electronics
Solution
 Higher efficiency
Power adjustment Interpretation * Better thermal
signal from EMS management

* Faster foy &

UDPI/IP computation time

communication

\

( Frontend |

controller
Electrolyzer
node voltage
phasor A 4
information t Low-level
DC,ref Scontroller
Andiog DC current =
voltage feedback
control signal v
Currentdrawn AC + >
Measurement e
by electrolyzer feedback pC >
from _
interf d Controllable
interface AC-DC
- converter /
_________ Grid emulator

250 kW electrolyzer

NREL
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* High-level controller (Front-end controller)

— applies EMS requirements and supports power quality by varying the
electrolyzer’s operating point

— communicates to other FECs to coordinate remedy actions

ﬂ Energy Management System / Distribution Management System

r
FEC:Front end controller I v
LLC:Low level controller
PEIl: Power electronics interface FEC Smart

Smart meter

I I
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Front End Controller :
Received | Communication |  ISO/Utility

FEC consists of three

MO d u | es. data module i command Management
Optimization 4 System
L. module Operation i QOperation /
1. Communication module decision FNOONN Disiribution

Realizes data exchange between
FEC, utility, and electrolyzer’s
low-level controller

Management
System

Operation

decision Operation condition

Decoding

Data cache

S =y |
L. . Interpretation & and goa >
2. Optimization module module
Computes set point for
. i Electrolyzer i Smart meter
electrolyzer operation that i . Local Smart meter
optimizes the revenue of the ; measurement | L:cal
hydrogen refueling station o ryf measurement
; : unit
. fi pla
3. Interpretationmodule ¢ | S S— |
Generates the reference control Low level Power signal
signal in order to ensure that feedback | DC Eleotolzer power slectonics
Chargmg interface

the low level controller properly
integrates with the FEC Low level controller

control
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 FEC receives numerous  FEC interfaced with Electrolyzer
information at input, applies * DR Signal received from higher
optimization algorithm, and level control
current

* Local sensing of power quality
 Reference is forwarded to the

electrolyzer’s low level
controller

* Reference operating point (DC-
current) sent to power converter

Aggregator/ e Communication line
DMS/EMS ) AC Power line
DC Power line

Front End

DR override (Utility Control)
User override

(Programmable Power output) FAST LOOP
(VOLTAGE AND

Vrms
f FREQUENCY »
req STABILITY) Idc — Rectifier

Pressure (Power control pilot)

Temperature

Controller
Maximum l Power set point
Power | (Optimal or Programmable)
Power Grid AC/DC Electrolyzer
Storage Pressure (SOC) (Distribution . Converter i
_ Energy Pricing SLOW LOOP Network) \_/ (Rectifier) H, Storage
(Time of the day forecast) (ECONOMICS 2

Hydrogen Demand AND USER

DEMANDS
OPTIMIZATION)

(Programmable or forecast)

Programmable Hydrogen Price
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Types of tests run to achieve 200 hour test results
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Remote electrolyzer operation over 200 hour test period shows electrolyzer’s ability to participate in grid support market

Four distinct profiles were used to characterize the electrolyzer response to remote commands
1. Ramp Up, Ramp Down > variations in increasing or decreasing load steps

2. Load Steps - variations in the size of change
3. Utility Demand Response - expected performance of electrolyzer in grid application
4.

Random Variations = variations in the speed of change

140
s |NLStkCmd == NRELSTkPWrF —— Minimum Power
120 =T
o ([ N I
580 .
E o
260 - - i
a
40 | T T T T l -~--
50 - ~~—-___~---
T .- |steady state error| < 1%
0 I I I I 1
0 5000 100 15000 20000 25000

Sample utility Demand Response time series data (PG&E E-20 profile) used
to remotely control the electrolyzer over ~7 hour window 8 March 2016.
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Electrolyzer Characterization Testing: Summary

Fast response time & quick slew rate

Performance Ramp-up & Load Steps DR Random Variation
Metric Ramp-down in Load
Response Time < 1seconds < 1seconds < 1seconds < 1seconds
Settling Time < 1seconds < 1seconds < 1seconds < 1seconds
Slew Rate +1 kW/second Predetermined load | 10 kW, 20 kW, 30 Random set-points
-1 kW/second values at variable kW, 40 kW, 50 kW, between 13 & 118
(Other rates were times 118 kW, & E-20 DR kW per second
0.5and 2 (PG&E) at 2, 5, and
kW/second) 10 minutes interval
Operational 13 kW to 118 kW 13 KW to 118 kW 13 KW to 118 kW 13 KW to 118 kW
Limits
Startup and 30 seconds and 30 seconds and 30 seconds and< 1 30 seconds and
Shutdown Time < 1 second < 1 second second < 1 second
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e Demonstration of reduction in transients created from faults
with electrolyzers in the grid

i Two Line to Ground Fault
—With Electrolyzer
0~ —Without Electrolyze
32 —
£c 200
> ~
U | l | |
0 1 2 3 . g
Time (in seconds)
0.018 T [ . .
—With Electrolyzer
o D0t —Without Electrolyzer]
5<
CX
E 0.014
0=
0.012r
0.01 ' : L L
0 1 2 3 4 5

Time (in seconds)

Resistive Capabilities and Impacts on the Grid
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Real-time grid model of Pacific Gas & Electric that covers hydrogen refueling station interconnections

* Network synthesis and modeling in M < A
real-time simulator at INL, represents J T\~ [i38KVSubtransmission |

S4: 36 simulation nodes

the PG&E infrastructure TT5kV Subtransmission ] /"¢
i @~ , . [Concord
* Electrolyzer connected as Hardware- N €
In-the-Loop (O .
. . - o1 : San Ramon
* Served as a testbed for testing grid san N @Oa“'a"d\@ € o
. op- . Francisco, S :
services and stability of connecting AR BEN e @ o— &
electrolyzers i b Pleasanton
— Centralized and distributed electrolysis S 2
. . ol \ : ‘\ '.: Fr
is assessed under varying conditions ] @ S, 2 Emon @
— Fault conditions within the grid e E
* Balanced and unbalanced faults ; Pt e |
¢ Step load changes in the grld S1: 60 simulatic;l; ;;J;jes! 5° \QN" 1.p et
.. 69kV Subtransmissic- M N
* Voltage and frequency variations @ % @
— Demand response signals and / j

S2: 48 simulation nodes "8 Jose

response of the electrolyzer S
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Electrolyzers controlled by FEC can enhance grid stability by limiting frequency excursions
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Electrolyzers controlled by FEC can enhance grid stability by limiting voltage excursions
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Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting frequency excursions
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Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting voltage excursions
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 Renewable Energy sources such as wind and solar demonstrate high degree of
time dependent variability i.e., seconds to minutes to days...

e Electrolyzers have an innate capability to respond in seconds to follow control set
points

* How can electrolyzers offset the variability observed by the power?
— Grids expected predictable and non-varying generation sources
— Hydrogen demands per day for different years are used as a constraint

Typical Wind Power Profile Typical Solar Profile
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Objective: Offset time-dependent,
aggregated variability of solar and
wind power using electrolysis

Total of 13 MW electrolyzer plant is
used for this example

2018 test case projections from ARB
on vehicle fuel use to generate 1,800
kg/day of hydrogen for 7,200 FCEVs

Approximate fuel dispensed in Santa
Clara, Sacramento, San Francisco,
Marin, Contra Cost and Alameda
county

Total energy consumed to generate
this hydrogen demand 90.28
MWh/day

Real Power in MW

Fuel Cell Technologies Office | 26

Total Wind and Solar Generation
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Time of the day
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e Advanced control of a 13 MW * Afixed and predictable power
electrolysis plant to offset variability of injected into the grid from solar and
wind and solar power wind plant due to coordinated

operation with electrolyzers

Electrolyzer performance to produce 1800 kg/day Aggregate Feed into the Grid (2018)
12 3
10 2.5
3 2 J
=
= s
£ £
3 ¢ g 15
&
5 g
4 1
2 0.5

0 5 10 15 20 0 5 10 15 20
Time of the day Time of the day
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* Objective: Offset time-dependent, Total wind and solar generation

aggregated variability of solar and wind
power using electrolysis

60

50

* Total of 45 MW electrolyzer plant is used
for this example

* Typical efficiency of PV ~20-30%

e 2022 test case is used as reference to
generate 7,575 kg/day of hydrogen for
43,600 FCEVs 20

* Approximate fuel dispensed in Santa
Clara, Sacramento, San Francisco, Marin,
Contra Cost and Alameda county

I
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Power in MW
w
o

 Total energy consumed to generate 330 0 5 10 15 2
MWh/d ay Time of the day
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Advanced control of a 45 MW
electrolysis plant to offset
variability of wind and solar
power

Electrolyzer performance to generate 7,575 kg/day of
hydrogen (2022)
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A fixed power injected into the grid
from solar and wind plant due to
coordinated operation with
electrolyzers

Total feed in the grid (2022)
9

8—

~N

()]

(6]

H

w

N

=

0 5 10 15 20
Time of the day



U.S. DEPARTMENT OF Energy EffICIency &

LeSSOnS Iearned ENERGY Renewable Energy

Fuel Cell Technologies Office | 30

* Fleets of electrolyzers (hydrogen refueling stations)
— grid support by reducing voltage and frequency excursions

* Enhanced revenue and reduced H, cost of production by
participating in power grid services

* FEC

— is a vendor-neutral controller that is compatible with the existing
electrolyzer’s (low level) controllers

— can receive and interpret communication signals coming from & going to
EMS/DMS/Aggregator

— enhances electrolyzer’s basic purpose to produce hydrogen by providing
grid services

— allows cohesive response of fleets of electrolyzers
— enables autonomous grid service responses
— allows H, operator choice to participate in grid services (or not to)
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RT-Super Lab

Atlantic Ocean

United States of America Europe
Laboratory .
Location
Full Name Acronym
Idaho National Laboratory INL Idaho Falls, Idaho
National Renewable Energy Laboratory NREL Golden, Colorado
Sandia National Laboratory SNL Albuquerque, New Mexico
Colorado State University .
Advanced Power Engineering Laboratory ikl e Caliing, ol
Florida State University .
Center for Advanced Power Systems AT Ll S A
University of South Carolina uUscC Columbia, South Carolina
Polytechnic University of Turin POLITO Turin, Italy
LIS CIl ) RWTH-ACS Aachen, Germany

31

Institute for Automation of Complex Power Systems
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Thank you

Rob Hovsapian
(rob.hovsapian@inl.gov)
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