U.S. Department of Energy Fuel Cell Technology Office

ENERGY Energy Efficiency & Renewable Energy

Role of Electrolyzers in Grid Services

05/23/2017

Rob Hovsapian, Ph.D. Department Manager Power and Energy Systems Idaho National Laboratory

- DOE Grid Modernization Laboratory Consortium (GMLC) project 1.4.2 "Definitions, Standards and Test Procedures for Grid Services from Devices"
- DOE Fuel Cell Technologies Office (FCTO) project "Dynamic Modeling and Validation of Electrolyzers in Real Time Grid Simulation"

Classes of Devices and Services

Devices (DERs)

Responsive, flexible end-use loads

- Water heaters
- Refrigerators
- Air conditioners
- Commercial rooftop units (RTUs)
- Commercial refrigeration
- Commercial lighting
- Electric vehicles (charging only)
- ► Electrolyzers

Storage

- Battery / inverter systems
- Thermal storage systems
- Electric vehicles (full vehicle-to-grid)

Distributed generation

- Photovoltaic solar (PV) / inverter systems
- ► Fuel cells

Grid Services

- Peak load management (capacity)
- Energy market price response (wholesale energy cost)
- Capacity market dispatch (market value)
- Frequency regulation (market value)
- Spinning reserve (market value)
- ► Ramping (new)
- Artificial inertia (new)
- Distribution voltage management (new; e.g., PV impacts management)

- Hydrogen production and storage during excess generation from renewables or traditional energy sources.
- Hydrogen can provide grid services

- Current activities role of hydrogen refueling stations in the electricity grid and renewable energy assimilation
- H2@Scale has a longer term vision with potential benefits of hydrogen to the energy nexus

Ramp-up Tests

60

50

40 **Current (A rms)** 30 50 50

10

0

0

0.025 0.05 0.075

0.1

Time (seconds)

from 25% to: 50%, 75% and 100% of rated power

0.125 0.15 0.175

- Ramp-down Tests
 - from 100% to: 75%, 50% and 25% of rated power

Ramp-up and ramp-down response of a PEM electrolyzer [Ref. 1]

0.0

0.2

	PEM electrolyzer	
Electrical Power	40 kW	
Rated Current	155 A per stack	
Stack Count	3	

Dynamic characteristics – Power Variation

- U.S. DEPARTMENT OF
ENERGYEnergy Efficiency &
Renewable EnergyFuel Cell Technologies Office | 7
- Power set-point variation to examine Demand Response
 - quantification of rate of rapid load change and demand response
 - tested with SCADA system inherent delay of 1 second

INL & NREL testing of a 120kW electrolyzer

- Peak capacity management
 - deploying fleets of electrolyzers to consistently and reliably reduce critical peak loads within a defined region or location on the grid
- Energy market price response
 - fleets of electrolyzers consume energy when prices are low and defer consumption (set energy free) when prices are high
- Regulation
 - operating point adjustment counteracts short-term changes in electricity use that might affect the stability of the power system
- Spinning Reserve
 - by reducing its power consumption fleets of electrolyzers can support the event when loss of generation unit in the grid occurs

- Ramping
 - analogue to generator, fleets of electrolyzers start and stop on command, while the "ramp rate" is the rate at which they can increase or decrease consumption
- Artificial inertia
 - fleets of electrolyzers regulate active power consumption in response rate of change of frequency
- Distribution voltage management
 - upon detecting the voltage deviations (self-sensing and/or receipt of external measurement signals) fleets of electrolyzers adjust the net load in the form of their reactive and/or real power components
- Autonomous grid service responses
 - additional (high-level) controller enables grid services in "stand-alone" mode

- Purely resistive load, supplied from a DC source (power converter)
- Very high rate of change and flexibility in setting power operating points
- Capable of sensing deviations in power systems, capable of adjusting their operating points to support the grid (fleets of electrolyzers)
- Frequency and voltage support by reducing/increasing power consumption

- Objective: Validate the benefits of hydrogen electrolyzers through grid services and hydrogen sale to fuel cell vehicles for full-scale deployment.
 - Characterization of the potential and highest economic value based on the needs of multiple stakeholders for specific grid regions
 - Demonstration of the reliable, fast-reacting performance of hydrogenproducing electrolyzers for at-scale energy storage devices
 - Verification of the communications and controls needed for successful participation in electricity markets and DR programs and ancillary services, leading to additional revenue and reduced hydrogen production cost

Controller Requirements

- High-level controller (Front-end controller)
 - applies EMS requirements and supports power quality by varying the electrolyzer's operating point
 - communicates to other FECs to coordinate remedy actions

Front-End Controller Architecture 1

U.S. DEPARTMENT OF
ENERGYEnergy Efficiency &
Renewable EnergyFuel Cell Technologies Office | 14

FEC consists of three modules:

- 1. Communication module Realizes data exchange between FEC, utility, and electrolyzer's low-level controller
- 2. Optimization module Computes set point for electrolyzer operation that optimizes the revenue of the hydrogen refueling station
- 3. Interpretation module Generates the reference control signal in order to ensure that the low level controller properly integrates with the FEC

- FEC receives numerous information at input, applies optimization algorithm, and generates reference DC current
- Reference is forwarded to the electrolyzer's low level controller

- FEC interfaced with Electrolyzer
- DR Signal received from higher level control (EMS/DMS/Aggregator)
- Local sensing of power quality
- Reference operating point (DCcurrent) sent to power converter

Types of tests run to achieve 200 hour test results

Remote electrolyzer operation over 200 hour test period shows electrolyzer's ability to participate in grid support market

Four distinct profiles were used to characterize the electrolyzer response to remote commands

- 1. <u>Ramp Up, Ramp Down \rightarrow variations in increasing or decreasing load steps</u>
- 2. Load Steps \rightarrow variations in the size of change
- 3. <u>Utility Demand Response</u> \rightarrow expected performance of electrolyzer in grid application
- 4. <u>Random Variations</u> \rightarrow variations in the speed of change

Fast response time & quick slew rate

Performance Metric	Ramp-up & Ramp-down	Load Steps	DR	Random Variation in Load	
Response Time	< 1seconds	< 1seconds	< 1seconds	< 1seconds	
Settling Time	< 1seconds	< 1seconds	< 1seconds	< 1seconds	
Slew Rate	+1 kW/second -1 kW/second (Other rates were 0.5 and 2 kW/second)	Predetermined load values at variable times	10 kW, 20 kW, 30 kW, 40 kW, 50 kW, 118 kW, & E-20 DR (PG&E) at 2, 5, and 10 minutes interval	Random set-points between 13 & 118 kW per second	
Operational Limits	13 kW to 118 kW	13 kW to 118 kW	13 kW to 118 kW	13 kW to 118 kW	
Startup and Shutdown Time	30 seconds and < 1 second	30 seconds and < 1 second	30 seconds and< 1 second	30 seconds and < 1 second	

• Demonstration of reduction in transients created from faults with electrolyzers in the grid

Resistive Capabilities and Impacts on the Grid

Real-time grid model of Pacific Gas & Electric that covers hydrogen refueling station interconnections

- Network synthesis and modeling in real-time simulator at INL, represents the PG&E infrastructure
- Electrolyzer connected as Hardware-In-the-Loop
- Served as a testbed for testing grid services and stability of connecting electrolyzers
 - Centralized and distributed electrolysis is assessed under varying conditions
 - Fault conditions within the grid
 - Balanced and unbalanced faults
 - Step load changes in the grid
 - Voltage and frequency variations
 - Demand response signals and response of the electrolyzer

Electrolyzers controlled by FEC can enhance grid stability by limiting frequency excursions

Electrolyzers controlled by FEC can enhance grid stability by limiting voltage excursions

Electrolyzer Response without FEC

Electrolyzer Response with FEC

Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting frequency excursions

Voltage Support by Multiple Electrolyzers with FEC

Multiple electrolyzers controlled by FEC can enhance overall grid stability by limiting voltage excursions

Variability of Renewable / Hydrogen Refueling Stations

- Renewable Energy sources such as wind and solar demonstrate high degree of time dependent variability i.e., seconds to minutes to days...
- Electrolyzers have an innate capability to respond in seconds to follow control set points
- How can electrolyzers offset the variability observed by the power?
 - Grids expected predictable and non-varying generation sources
 - Hydrogen demands per day for different years are used as a constraint

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 25

2018 Case with 7,200 FCEVs

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 26

- Objective: Offset time-dependent, aggregated variability of solar and wind power using electrolysis
- Total of 13 MW electrolyzer plant is used for this example
- 2018 test case projections from ARB on vehicle fuel use to generate 1,800 kg/day of hydrogen for 7,200 FCEVs
- Approximate fuel dispensed in Santa Clara, Sacramento, San Francisco, Marin, Contra Cost and Alameda county
- Total energy consumed to generate this hydrogen demand 90.28 MWh/day

Total Wind and Solar Generation

Wind, Solar, and Electrolysis

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 27

- Advanced control of a 13 MW electrolysis plant to offset variability of wind and solar power
- A fixed and predictable power injected into the grid from solar and wind plant due to coordinated operation with electrolyzers

2022 Case with 43,600 FCEVs

ENERGY | Renewable Energy Fuel Cell Technologies Office | 28

Energy Efficiency &

Objective: Offset time-dependent, aggregated variability of solar and wind power using electrolysis

- Total of 45 MW electrolyzer plant is used for this example
- Typical efficiency of PV ~20-30%
- 2022 test case is used as reference to generate 7,575 kg/day of hydrogen for 43,600 FCEVs
- Approximate fuel dispensed in Santa Clara, Sacramento, San Francisco, Marin, Contra Cost and Alameda county
- Total energy consumed to generate 330 MWh/day

Total wind and solar generation

Wind, Solar, and Electrolysis

Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 29

U.S. DEPARTMENT OF

Advanced control of a 45 MW electrolysis plant to offset variability of wind and solar power

A fixed power injected into the grid from solar and wind plant due to coordinated operation with electrolyzers

- Fleets of electrolyzers (hydrogen refueling stations)
 - grid support by reducing voltage and frequency excursions
- Enhanced revenue and reduced H₂ cost of production by participating in power grid services

• FEC

- is a vendor-neutral controller that is compatible with the existing electrolyzer's (low level) controllers
- can receive and interpret communication signals coming from & going to EMS/DMS/Aggregator
- enhances electrolyzer's basic purpose to produce hydrogen by providing grid services
- allows cohesive response of fleets of electrolyzers
- enables autonomous grid service responses
- allows H₂ operator choice to participate in grid services (or not to)

ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 31

United States of America

Europe

Laboratory	Location	
Full Name	Acronym	
Idaho National Laboratory	INL	Idaho Falls, Idaho
National Renewable Energy Laboratory	NREL	Golden, Colorado
Sandia National Laboratory	SNL	Albuquerque, New Mexico
Colorado State University Advanced Power Engineering Laboratory	CSU-APEL	Fort Collins, Colorado
Florida State University Center for Advanced Power Systems	FSU-CAPS	Tallahassee, Florida
University of South Carolina	USC	Columbia, South Carolina
Polytechnic University of Turin	POLITO	Turin, Italy
RWTH Aachen University Institute for Automation of Complex Power Systems	RWTH-ACS	Aachen, Germany

31

Multi-Lab Co-simulation and (P)HIL- Current Status

ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 32

- 1. J. Eichman, K. Harrison, and M. Peters, "Novel Electrolyzer Applications: Providing More Than Just Hydrogen", NREL, September 2014
- E. Zoulias, E. Varkaraki, N. Lymberopoulos, C.N. Christodoulou, G.N. Karagiorgis, "A Review On Water Electrolysis", Centre for Renewable Energy Sources (CRES) and Frederick Research Center (FRC), Greece, 2006
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, "A comprehensive review on PEM water electrolysis." International Journal of Hydrogen Energy (38:12), 2013; pp. 4901-4934
- 4. G. Zini, P. Tartarini, "Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy", Springer, Italy, 2012
- 5. Joonas Koponen, "Review of water electrolysis technologies and design of renewable hydrogen production systems", Master's Thesis, Lappeenranta University of Technology, Finland, 2015
- 6. Jennifer Kurtz, Kevin Harrison, Rob Hovsapian, Manish Mohanpurkar, "Dynamic Modeling and Validation of Electrolyzers in Real Time Grid Simulation", Intermountain Energy Summit, August 9, 2016
- Ruth, M. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review. NREL/BK-6A1-46676. Golden, CO: National Renewable Energy Laboratory, 2009

Thank you

Rob Hovsapian (rob.hovsapian@inl.gov)