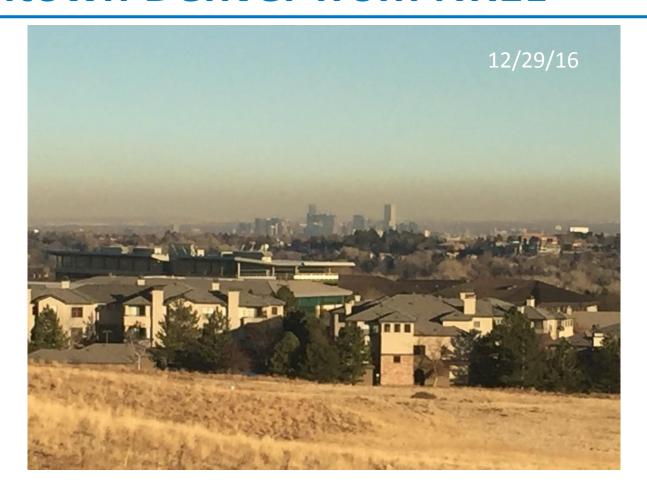


Introduction to H2@Scale


2017 DOE Hydrogen and Fuel Cells Program Review

Bryan Pivovar (PI)

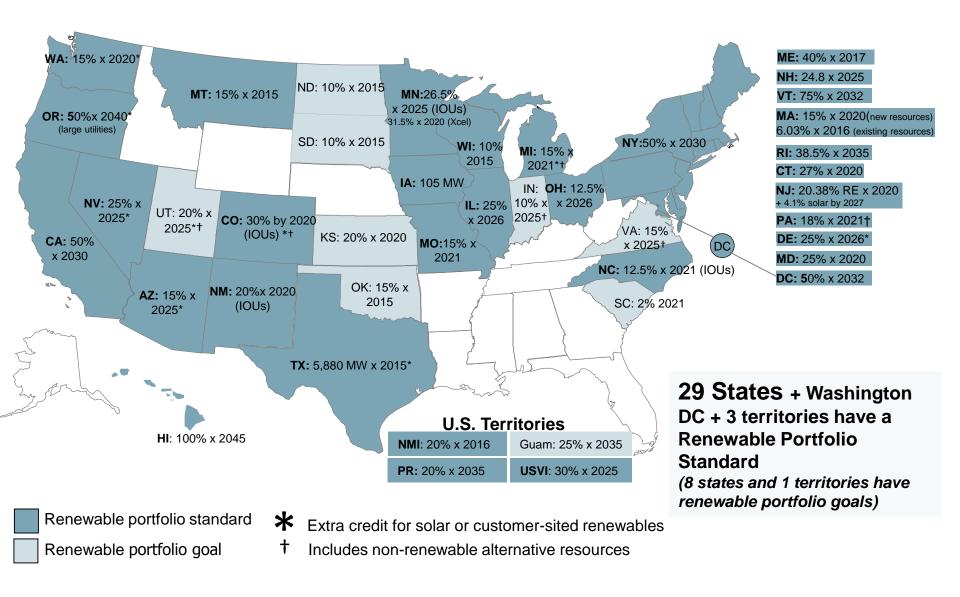
June 9, 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information

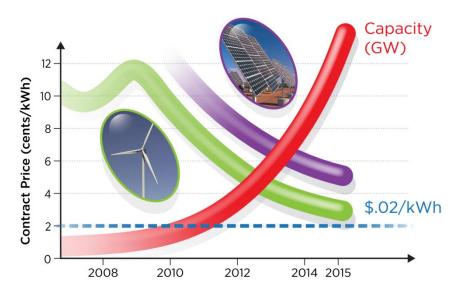
Downtown Denver from NREL

27 September 2016 | GENEVA - A new WHO air quality model confirms that 92% of the world's population lives in places where air quality levels exceed WHO limits.

More than half US population lives amid dangerous air pollution, report warns

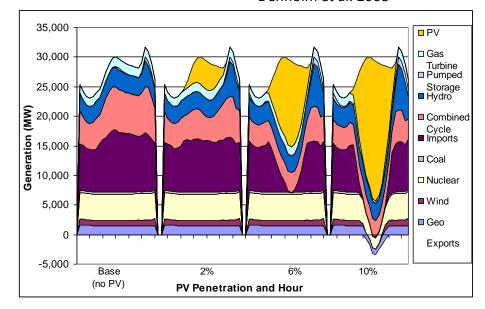

https://www.theguardian.com/environment/2016/apr/20/d angerous-air-pollution-us-population-report

Energy System Challenge


- Multi-sector requirements
 - Transportation
 - Industrial
 - o Grid

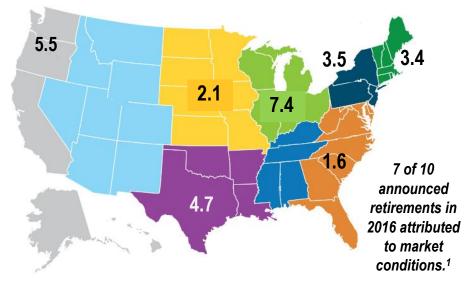
How do we supply all these services in the most beneficial manner?

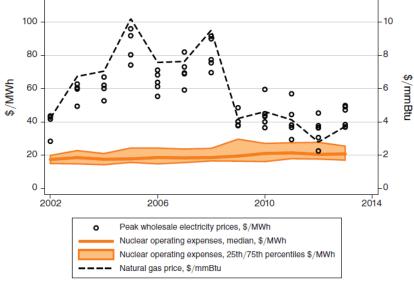
Changing Landscape - RPS



Renewable Energy Impacts

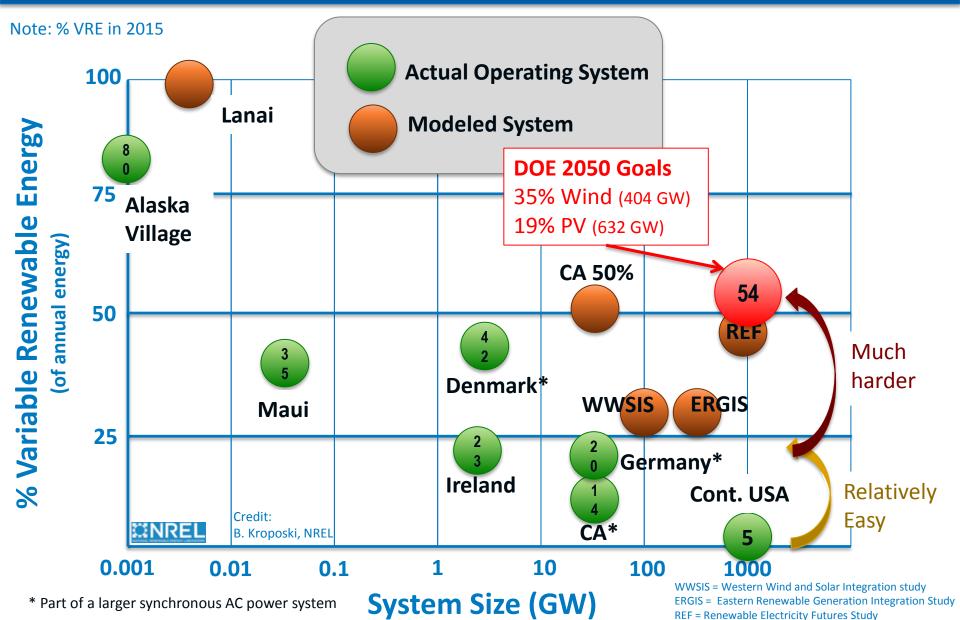
Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1'15 Report, 2. DOE EERE Wind Report, 2015


Denholm et al. 2008


Renewable Energy Impacts

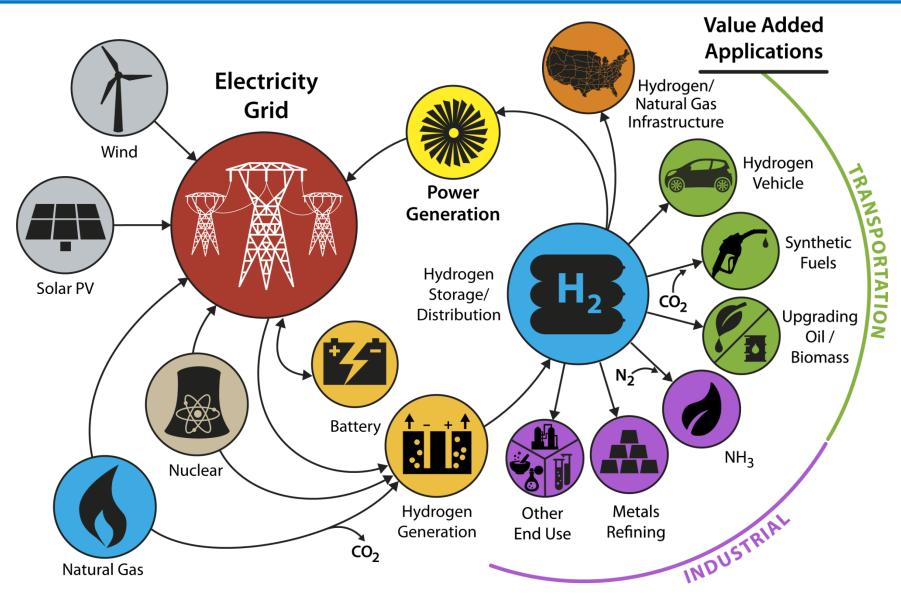
Nuclear Plants at Risk by 2030, or Recently Retired (GW) ¹

1. Source: U.S. DOE Quadrennial Energy Review, 01/2017



Source: L. Davis and C. Hausman, American Economic Journal, Applied Economics, 2016 Market Impacts of a Nuclear Power Plant Closure

Actual cost of electricity production by nuclear plants in the United States


What constitutes "a pace and scale that matters" for our efforts to transform clean energy systems?

Dwight D. Eisenhower

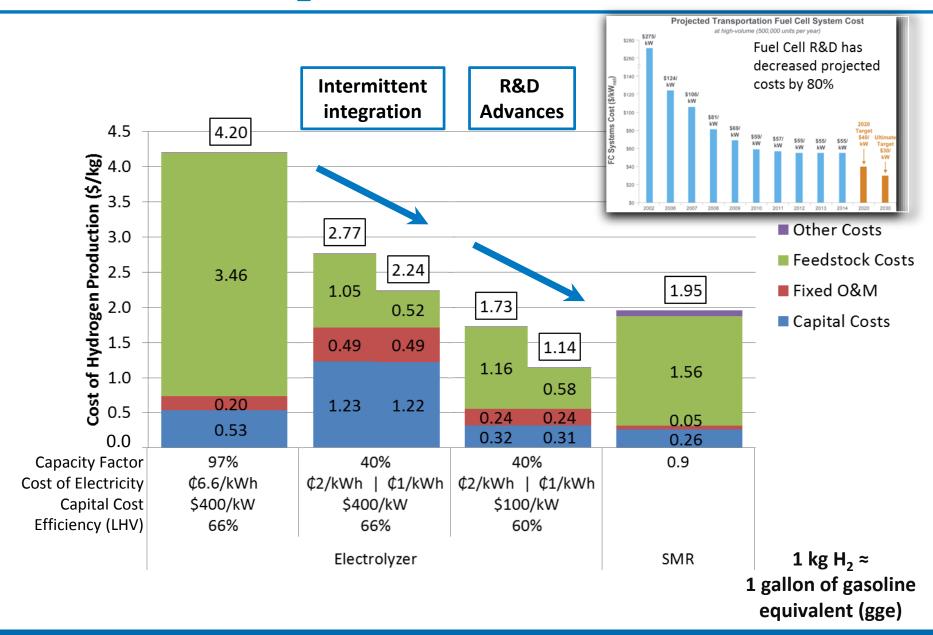
"If you can't solve a problem, enlarge it"

Conceptual H2@Scale Energy System*

^{*}Illustrative example, not comprehensive

H2@Scale Vision

Attributes


- Large-scale, clean, energy-carrying intermediates for use across energy sectors
- o Increased penetration of variable renewable power and nuclear generation
- Expanded thermal generation (nuclear, CSP, geothermal) through hybridization
- Increased H2 from methane (carbon capture/use potential)

Benefits

- Increased energy sector jobs (GDP impact)
- Manufacturing competitiveness (low energy costs)
- Enhanced energy security (reduced imports, system flexibility/resiliency)
- Enhanced national security (domestic production (metals), local resources)
- Improved air(water) quality via reduced emissions (criteria pollutants, GHGs)
- Decreased energy system water requirements.

Getting <u>all</u> these benefits in a single energy system significantly enhances value.

Conceptual H₂ at Scale Energy System*

H2@Scale Big Idea Teams/Acknowledgement

Steering Committee:

Bryan Pivovar (lead, NREL), Amgad Elgowainy (ANL), Richard Boardman (INL), Shannon Bragg-Sitton (INL); Adam Weber (LBNL), Rod Borup (LANL), Mark Ruth (NREL), Jamie Holladay (PNNL), Chris Moen (SNL), Don Anton (SRNL)

H2@Scale has moved beyond this National Lab team to include DOE offices, and other stakeholders.

DOE - FCTO: Neha Rustagi, John Stevens, Fred Joseck, Eric Miller, Jason Marcinksoski, Dave Peterson, James Kast, Leah Fisher; NE: Carl Sink

Low T **Generation:**

Rod Borup (lead, LANL); Jamie Holladay (PNNL); Christopher San Marchi (SNL); Hector Colon Mercado (SRNL); Kevin Harrison (NREL); Ted Krause (ANL); Adam Weber (LBNL); David Wood (ORNL)

High T **Generation:**

Jamie Holladay (lead, PNNL); Jim O'Brien (INL); Tony McDaniel (SNL); Ting He (INL); Mike Penev (NREL); Bill Summers (SRNL); Maximilian Gorensek (SRNL); Jeffery Stevenson (PNNL); Mo Khaleel (ORNL)

Storage and Distribution:

Don Anton (lead, SRNL); Chris San Marchi (SNL); **Kriston Brooks** (PNNL); Troy Semelsberger (LANL); Salvador Aceves (LLNL); Thomas Gennett (NREL); Jeff Long (LBNL); Mark Allendorf (SNL); Mark Bowden PNNL; Tom Autrey PNNL

Utilization:

Richard Boardman (lead, INL); Don Anton (SRNL); Amgad Elgowainy (ANL); Bob Hwang (SNL): Mark Bearden (PNNL); Mark Ruth (NREL); Colin McMillan (NREL); Ting He (INL); Michael Glazoff (INL); Art Pontau (SNL); Kriston Brooks (PNNL); Jamie Holladay (PNNL); Christopher San Marchi (SNL); Mary Biddy (NREL); Geo Richards (NETL)

Future Electric Grid:

Charles Hanley (lead, SNL); Art Anderson (NREL); Bryan Hannegan (NREL); Chris San Marchi (SNL); Ross Guttromson (SNL); Michael Kintner-Meyer (PNNL); Jamie Holladay (PNNL); Rob Hovsapian (INL)

Foundational Science:

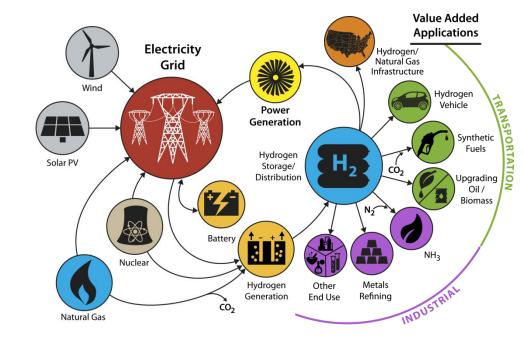
Adam Weber (lead, LBNL); Voja Stamekovic (ANL); Nenad Markovic (ANL); Frances Houle (LBNL); Morris Bullock (PNNL); Aaron Appel (PNNL); Wendy Shaw (PNNL); Tom Jaramillo (SLAC); Jens Norskov (SLAC); Mark Hartney (SLAC), Vitalij

Pecharsky (Ames);

Alex Harris (BNL)

Analysis:

Mark Ruth (lead, NREL); Amgad Elgowainy (co-lead, ANL); Josh Eichman (NREL); Joe Cordaro (SRNL); Salvador Aceves (LLNL); Max Wei (LBNL); Karen Studarus (PNNL); Todd West (SNL); Steve Wach (SRNL); Richard Boardman (INL); David Tamburello (SRNL); Suzanne Singer (LLNL)



Stakeholder Groups - Workshops - Roadmaps

- Nuclear
- Wind
- Solar
- Fossil
- Grid/Utilities
- Regulators
- Electrolysis
- Industrial Gas
- Auto OEMs/supply chain
- Fuels Production (Big Oil, Biomass)
- Metals/Steel
- Ammonia
- Analysis
- Investors

Blue: High engagement and support

Green: Engaged with interest/support

Orange: Limited engagement

Black: Little engagement

H2@Scale Workshop Report available at

http://www.nrel.gov/docs/fy17osti/68244.pdf

Key Current/Next Steps

Hydrogen Infrastructure

Gaseous Hydrogen Delivery

Current Status

Steel Pipelines

- Hydrogen pipelines have been in use since the 1930s. [1]
- Hydrogen pipelines are installed when demand is 100s of thousands of kilograms per day, and expected to remain stable for 15-30 years.
- 1,600 miles of pipeline operate in the U.S. [2] with a maximum operating pressure of 70 bar [3].
- Pipeline design is guided by the American Society of Mechanical Engineers (ASME) 831.12 code, and is based on the expected operating pressure, pressure cycling, location, and steel.
- Performance of conventional low-strength steels and welds (X52-X70)
 has been characterized in hydrogen [4], and guided ASME B31.12 code
 modifications in 2016.
- Certain steel microstructures have been shown to be more susceptible to embrittlement than others (e.g. ferrite is more susceptible than pearlite). [3]
- Two mechanisms of hydrogen embrittlement are currently being focused in research: hydrogen enhanced localized plasticity (HELP) and hydrogen induced decohesion (HID). [5]

Pipeline Compressors

- Multi-stage reciprocating compressors with output pressures of 1,000 psig are the current state of the art. [1]
 - Alternative technologies include diaphragm and centrifugal technologies; both of these are challenged at high flow rates. [6]
- Hydrogen pipeline compressors require significantly more power than natural gas compressors because the volumetric energy density of hydrogen is low. [1]
- Hydrogen compressor maintenance costs are high due to failures of valves, rider bands, and piston rings. [1]

Other Technologies

- Performance of fiber reinforced polymer (FRP) has been characterized in hydrogen, and results have been used to codify FRP for 170 bar hydrogen service in ASME B31.12.
 - The primary market for FRP today is upstream oil and gas operations.

while maintaining excellent performance as well as designing high temperature electrolysis syste

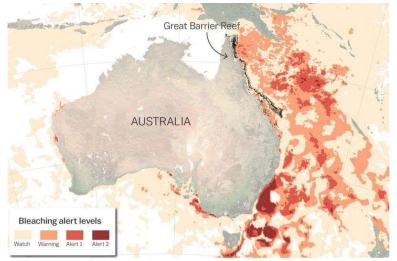
R&D Needs

Challenge	R&D Needs	TRL
Cost	PEM: Implementation, including scale-up, of recent lab scale R&D cell component advances (e.g. electrodes with 5-10x lower PGM content) into commercial stack products.	4
	<u>PEM</u> : Development of manufacturing innovations and technologies for high volume production of MW- to GW-scale electrolyzer cells and stacks (e.g. roll-to-roll processing of membranes and electrodes).	4-5
	AEM: Investigation and validation of low cost material options for catalysts, bipolar plates, etc. that should be stable in AEM basic environment	2-5
	<u>SOEC</u> : Development of system designs that optimize electrical and overall efficiency, including efficient integration with industrial process heat (e.g. nuclear reactors)	3-4
	Crosscutting: Development of BOP components (e.g. power electronics) specific to electrolyzer operating conditions/ requirements.	3-5
Performance	<u>PEM</u> : Further optimization of cell (membrane, catalyst/electrode) and stack (bipolar plates, porous transport layer) components and interfaces for electrolyzer operating conditions.	4

> FY16-FY17

- H2@Scale Workshop to obtain feedback that guided roadmap development
- Preliminary analysis to determine technical potential of hydrogen supply and demand

> FY17-FY18


- H2@Scale Workshop to solicit feedback on draft RD&D roadmap, and identify regional and near-term opportunities to advance H2@Scale
- H2@Scale Roadmap identifying and prioritizing RD&D needs
- Analysis to assess potential supply and demand of H2@Scale under future market scenarios

> June 10, 2017

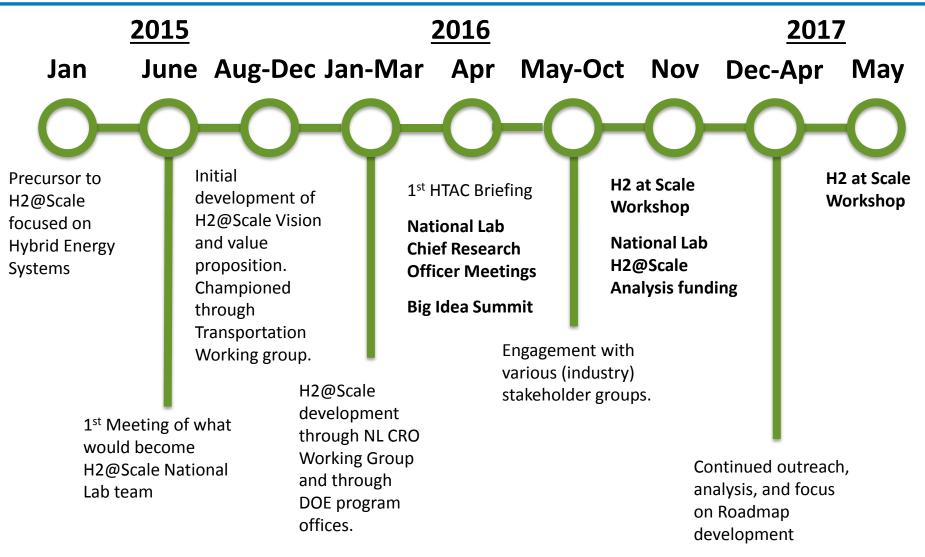
 Review session at FCTO's Annual Merit Review to obtain feedback on technoeconomic analysis, and roadmap

Future Impact

The Great Barrier Reef's catastrophic coral bleaching, in one map

Mysterious Whale Swarms Perplexing Scientists

"Super-groups" of up to 200 humpback whales—a normally solitary species—are gathering off South Africa.



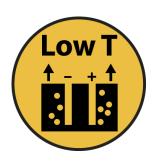
Images:

- 1. http://www.msn.com/en-gb/travel/news/the-great-barrier-reef%e2%80%99s-catastrophic-coral-bleaching-in-one-map/ar-BBA1t2n?li=BBoPU0T
- 2. http://news.nationalgeographic.com/2017/03/humpback-whales-swarms-south-africa/

Technical Backup Slides

Key H2@Scale Events - Timeline

H2@Scale webinar available at

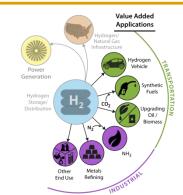

http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

What is needed to achieve H₂ at Scale?

Low and High Temperature H₂ Generation

H₂ Storage and Distribution

H₂ Utilization

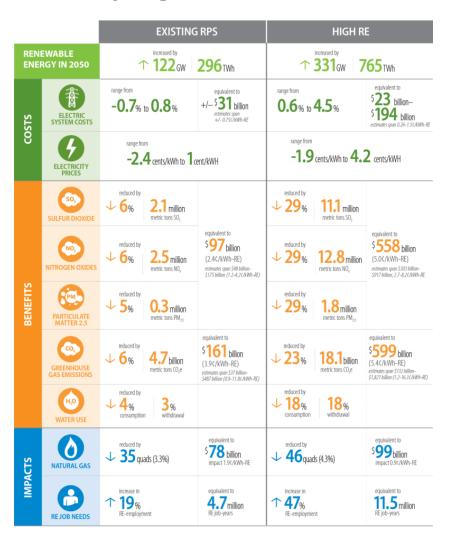

Development of low cost, durable, and intermittent H₂ generation.

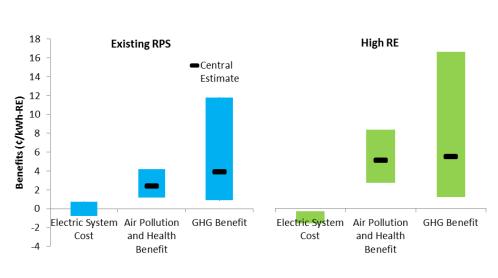
thermally integrated, low cost, durable, and variable H₂ generation.

Development of safe, reliable, and economic storage and distribution systems.

H₂ as gamechanging energy carrier, revolutionizing energy sectors.

Analysis


Foundational Science


Future Electrical Grid

H2 at Scale HTAC May 4, 2017 18

Value Proposition Development

Trying to build off/follow in tracks of others

<u>A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable</u> <u>Portfolio Standards</u>

NREL/TP-6A20-67455

http://www.nrel.gov/docs/fy17osti/67455.pdf

H2 at Scale HTAC May 4, 2017 19