Foundational Research for H2@Scale: Energy Materials Network Consortia

Energy Efficiency & Renewable Energy

H2@Scale AMR Review

Washington, DC

June 9, 2017

Eric L Miller

H₂ Production & Delivery
Program Manager
Fuel Cell Technologies Office
U.S. Department of Energy

The DOE Energy Materials Network (EMN)

ENERGY MATERIALS NETWORK

Energy Materials Network Home

About the Energy Materials Network

Funding Opportunities

News

Contact Us

ElectroCat

The Electrocatalysis Consortium (ElectroCat) is using national lab resources and capabilities such as Argonne's High-Throughput Research facility (pictured) and Los Alamos' ability to design and synthesize catalysts to speed the development process of PGM-free electrocatalysts for fuel cells. *Photo credit: Argonne National Laboratory* EMN creates a nexus of industry, government, & laboratory stakeholders with resources focused on accelerating materials innovation into clean-energy products

U.S. DEPARTMENT OF

ENERG

Energy Efficiency &

Renewable Energy

Fuel Cell Technologies Office | 2

https://energy.gov/eere/energy-materials-network/energy-materials-network

A Platform for Accelerated R&D

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy
Fuel Cell Technologies Office | 3

Cutting-edge materials research for critical energy technologies

Bridging Science and Application

U.S. DEPARTMENT OF ENERGY Efficiency & Renewable Energy Fuel Cell Technologies Office | 4

push

The EMN relies on industry pull and scientific push to work together in the accelerated R&D of important clean energy technologies

Facilitating access to scientific innovation in materials R&D

The EMN Pioneer Consortia

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 5

EMN consortia focus on critical clean energy challenges

PGM-free catalysts for fuel cells are critical for cost-reductions needed for large-scale market penetration

Breakthrough H₂ storage materials are key to large-scale H₂ energy & possible future on-board storage

H2@Scale depends on a future portfolio of large-scale, low-cost, sustainable H₂O splitting options

Accelerating R&D in H₂ production, storage and utilization

ElectroCat: Fuel Cell PGM-Free Electrocatalysts ENERG

ERGY | Renewable Energy

Energy Efficiency &

U.S. DEPARTMENT OF

Core Labs

Accelerating the discovery & development of innovative catalyst and electrode materials critical to advanced platinum group metal-free fuel cell technologies

> Comprising world-class capabilities and expertise in:

- catalyst synthesis, characterization, processing, & manufacturing
- high-throughput, combinatorial techniques
- advanced computational tools

Synthesis, processing and manufacturing

Characterization and Synthesis

(d) Data Mana

Website: http://www.electrocat.org/

HyMARC: Breakthrough H₂ Storage Materials

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 8

HyMARC will provide capabilities and foundational understanding of phenomena governing thermodynamics and kinetics limiting the development of solid-state hydrogen storage materials

Delivering community tools and capabilities:

- **Computational models and databases** for high-throughput materials screening
- New characterization tools and methods (surface, bulk, soft X-ray, synchrotron)
- Tailorable synthetic platforms for probing nanoscale phenomena

In situ characterization

Website: https://hymarc.org/

HydroGEN: Advanced H₂O Splitting Materials

 U.S. DEPARTMENT OF
 Energy Efficiency &

 Renewable Energy
 Fuel Cell Technologies Office | 9

Accelerating discovery & development of innovative materials critical to advanced technologies for sustainable H₂ production, including:

- Advanced high- and low-temperature electrochemical conversion
- Direct photoelectrochemical solar water splitting
- Direct solar thermochemical water splitting

Comprising more that 80 unique, world-class capabilities/expertise in materials theory/computation, synthesis, characterization & analysis:

Materials Theory/Computation

Bulk & interfacial models of aqueous electrolytes

LAMMPS classic molecular dynamics modeling relevant to H₂O splitting

Advanced Materials Synthesis

High-throughput spray pyrolysis system for electrode fabrication

Conformal ultrathin TiO₂ ALD coating on bulk nanoporous gold

Characterization & Analytics

Stagnation flow reactor to evaluate kinetics of redox material at high-T

TAP reactor for extracting quantitative kinetic data

Website: https://www.h2awsm.org/

Streamlined Access to Materials Innovations

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 10

The EMN leverages National Lab resources to foster foundational materials R&D for important clean energy applications

The EMN framework facilitates streamlined access for industry and academic stakeholders

EMN innovation ecosystem facilitates foundational H2@Scale R&D

Facilitating H2@Scale Foundational R&D

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 11

Single points of contact facilitate stakeholder/consortia interactions

ENERGY Energy Efficiency & Renewable Energy

THANK YOU

Eric L. Miller eric.miller@ee.doe.gov

http://energy.gov/eere/transportation/hydrogen-and-fuel-cells