DE-FOA-0001647: Fuel Cell Technologies Office Annual FOA Recepients

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Topic 1: ElectroCat (Electrocatalysis Consortium) – PGM-free Catalyst and Electrode R&D	Carnegie Mellon University	Advanced PGM-free Cathode Engineering for High Power Density and Durability	\$2,000,000
Topic 1: ElectroCat (Electrocatalysis Consortium) – PGM-free Catalyst and Electrode R&D	GreenWay Energy, LLC	PGM-free Engineered Framework Nano-Structure Catalysts	\$2,000,000
Topic 1: ElectroCat (Electrocatalysis Consortium) – PGM-free Catalyst and Electrode R&D	Giner, Inc.	Durable Mn-based PGM-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells	\$1,999,029
Topic 1: ElectroCat (Electrocatalysis Consortium) – PGM-free Catalyst and Electrode R&D	Pacific Northwest National Laboratory	Highly Active and Durable PGM-free ORR Electrocatalysts through the Synergy of Active Sites	\$645,101
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – High Temperature Electrolysis	University of Connecticut	Proton-Conducting Solid Oxide Electrolysis Cells for Large-scale Hydrogen Production at Intermediate Temperatures	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – High Temperature Electrolysis	United Technologies Research Center	Thin-Film, Metal-Supported High- Performance and Durable Proton- Solid Oxide Electrolyzer Cell	\$249,978

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – High Temperature Electrolysis	Northwestern University	Degradation Characterization and Modeling of a New Solid Oxide Electrolysis Cell Utilizing Accelerated Life Testing	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Low Temperature Electrolysis	Proton Energy Systems	High Efficiency PEM Water Electrolysis Enabled by Advanced Catalysts, Membranes and Processes	\$248,931
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Low Temperature Electrolysis	Northeastern University	Developing Novel Platinum Group Metal-Free Catalysts for Alkaline Hydrogen and Oxygen Evolution Reactions	\$250,500
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Low Temperature Electrolysis	Los Alamos National Laboratory	High-Performance Ultralow-Cost Non-Precious Metal Catalyst System for AEM Electrolyzer	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Low Temperature Electrolysis	Argonne National Laboratory	PGM-free OER Catalysts for PEM Electrolyzer	\$250,000

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Low Temperature Electrolysis	Los Alamos National Laboratory	Scalable Elastomeric Membranes for Alkaline Water Electrolysis	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Photoelectrochemical	University of Hawaii at Manoa	Novel Chalcopyrites For Advanced Photoelectrochemical Water Splitting	\$238,113
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Photoelectrochemical	University of Michigan	Monolithically Integrated Thin- Film/Silicon Tandem Photoelectrodes for High Efficiency and Stable Photoelectrochemical Water Splitting	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Photoelectrochemical	Rutgers - State Un. of NJ: New Brunswick/Pisc ataway	Best-in-class Platinum Group Metal- free (PGM-free) Catalyst Integrated Tandem Junction Photoelectrochemical (PEC) Water Splitting Devices	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Photoelectrochemical	Stanford University	Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices	\$222,566
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for	Los Alamos National Laboratory	Efficient Solar Water Splitting with 5,000 Hours Stability Using Earth- abundant Catalysts and Durable Layered 2D Perovskites	\$250,000

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Advanced Water Splitting – Photoelectrochemical			
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Solar Thermochemical H2 Production	University of Colorado Boulder	Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production	\$247,509
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Solar Thermochemical H2 Production	Northwestern University	Transformative Materials for High- Efficiency Thermochemical Production of Solar Fuels	\$250,000
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Solar Thermochemical H2 Production	GreenWay Energy, LLC	High Temperature Reactor Catalyst Material Development for Low Cost and Efficient Solar Driven Sulfur- based Processes	\$249,898
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water Splitting – Solar Thermochemical H2 Production	Colorado School of Mines	Accelerated Discovery of Solar Thermochemical Hydrogen Production Materials via High- Throughput Computational and Experimental Methods	\$249,684
Topic 2A: HydroGEN – Durable, High- Performance Materials and Interfaces for Advanced Water	Arizona State University	Mixed Ionic Electronic Conducting Quaternary Perovskites: Materials by Design for Solar Thermochemical Hydrogen	\$166,213

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Splitting – Solar Thermochemical H2 Production			
Topic 2B: HydroGEN - Development of Best Practices in Materials Characterization and Benchmarking for Advanced Water Splitting Technologies	Proton Energy Systems Inc	Benchmarking Advanced Water Splitting Technologies: Best Practices in Materials Characterization	\$2,000,000
Topic 3: HyMARC - Hydrogen Storage Materials Discovery	University of Michigan	Optimized Hydrogen Adsorbents via Machine Learning and Crystal Engineering	\$250,000
Topic 3: HyMARC - Hydrogen Storage Materials Discovery	University of California, Berkeley	Super Metallated Frameworks as Hydrogen Sponges	\$250,000
Topic 3: HyMARC - Hydrogen Storage Materials Discovery	National Renewable Energy Laboratory	ALD (Atomic Layer Deposition) Synthesis of Novel Nanostructured Metal Borohydrides	\$151,260
Topic 3: HyMARC - Hydrogen Storage Materials Discovery	National Renewable Energy Laboratory	Fluorinated Covalent Organic Frameworks: A Novel Pathway to Enhance Hydrogen Sorption and Control Isosteric Heats of Adsorption	\$149,165
Topic 4: Precursor development for low- cost, high-strength carbon fiber for use in composite overwrapped pressure vessel applications	University of Kentucky	Precursor Processing Development for Low Cost, High Strength Carbon Fiber for Composite Overwrapped Pressure Vessel Applications	\$984,939
Topic 4: Precursor development for low- cost, high-strength carbon fiber for use in composite overwrapped pressure vessel applications	The Pennsylvania State University	Developing A New Polyolefin Precursor for Low-Cost, High- Strength Carbon Fiber	\$804,563

Торіс	Recipient	Title	Proposed DOE Share (FY17)
Topic 4: Precursor development for low- cost, high-strength carbon fiber for use in composite overwrapped pressure vessel applications	Oak Ridge National Laboratory	Novel Plasticized Melt Spinning Process of PAN Fibers Based on Task-Specific Ionic Liquids	\$274,000
			~\$15.8M