CLS Your Partner in Smart Solutions

Improved Fuel Efficiency through Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems

Alexander Sappok (PI), Paul Ragaller, Leslie Bromberg

DOE Merit Review, Washington DC June 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: October 2015
- Project End: December 2017*
- Percent Complete: 50%
- *No cost extension for BP1 may also extend project end date.

Budget

- Total Funding: \$1,378,292
 - DoE Share: \$1,101,252
 - Contractor Share: \$277,040
- Total Funding
 - •Funding in FY16: \$226,849
 - •Funding for FY17: \$665,101*
 - * Planned FY2017

Barriers

- Emission controls are <u>energy intensive</u>^L and costly
- Lack of "ready-to-implement" sensors and controls
- <u>Durability</u> of 120K miles for LD and 435 K miles for HD

Need sensors and controls to exploit efficiency potential of advanced engines!

Partners

- Department of Energy
- **Corning** Advanced Substrates & Catalysts
- Oak Ridge National Lab Catalyst Testing
- Cummins HD OEM Tech. Adviser
- Detroit Diesel HD OEM Tech. Adviser
- FCA LD OEM Tech. Adviser
- DSNY (New York) Fleet Testing

Relevance – Project Objectives

<u>Remove Technical Barriers</u> of aftertreatment-related fuel consumption and improve system durability, reduce system cost and complexity.

<u>Develop RF Sensing Platform</u> for direct measurements of catalyst state for clean diesel, lean gasoline, and low temperature combustion modes.

The Specific Objectives of this Project Include:

- 1. Develop RF sensors and evaluate the feasibility of RF sensing for the following catalysts and applications:
 - Selective Catalytic Reduction (SCR): Ammonia storage, diesel & gasoline
 - Three-Way Catalyst (TWC): Oxygen storage, gasoline
 - Hydrocarbon Traps: HC storage, low temperature combustion
- 2. Develop implementation strategies for the most promising applications to enable low-cost and robust emission controls to enable advanced combustion engines.
- 3. Demonstrate and quantify improvements in fuel consumption and emissions reduction through RF sensing in engine and vehicle tests with industry and national laboratory partners.

Relevance – Proposed Technology and Concept

- Direct measurement of multiple catalysts
- Adaptive feedback controls adjusts as system ages

CONCEPT: Multi-function <u>*RF sensing platform*</u> to enable more robust and more efficient emission controls for gasoline, clean diesel and advanced low temperature combustion modes.

Technology Assessment			ALC:	a co
Sensor Type	NOx or O2	Ammonia	Soot (PM)	RF Sensor
Applications	NOx or O ₂ Only	NH ₃ Only	PM Only	NH ₃ , O ₂ , NOx, HC, PM, Ash
Catalyst State	Model/Estimate	Model/Estimate	Model/Estimate	Direct Measurement
Sensing Element	Active	Active	Active	Passive

cis

Current systems use many different types of exhaust gas sensors.

Relevance – Efficiency Gains Enabled via Smart Aftertreatment

Diesel Efficiency Gains Enabled via Improved Aftertreatment SAE 2013-0102421

Application High Eff. NOx AT		Reduced EGR	Reduced Backpressure	Thermal Management			
Line Haul	2.5%	1.0%	1.0%	0.0%			
Vocational	2.5%	1.0%	1.0%	2.5%			

Lean Gasoline Efficiency Gains Enabled via Lean NOx Control

Cis

Source	NOx Control	Fuel Savings vs. Stoich.	Engine Type
SAE 2011-01-0307	PASS	8.9% - 11.1%	SIDI V8 GM
SAE 2014-01-1505	PASS	1% - 7% (steady-state)	2.0L Lean BMW GDI
ACEC Roadmap 2013	LNT (MB), PASS (BMW)	12% - 20%	Mercedes, BMW

Improved sensors and controls are key enablers for more efficient use of aftertreatment to deliver additional reductions in engine fuel consumption.

Technical Approach and Overview – Phase I

I. Application Feasibility

- Sensor Development
- Catalyst Screening Test & Modeling

II. Sensor Demonstration

- Sensor Optimization for Application
- Engine Dyno & Vehicle Evaluations

	_	ing	٢		S	Summary of Team Roles, Tasks, and	Year 1				Year 2				Y3	
FST	ORN	Corn	NSO	OEM		Timeline		Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
					Pha	ase I - Application Feasibility										
L					1	Project Management and Planning	X	Y								
L					2	Develop RF Sensors		U.S.								
	L				3	Evluate Application-Specific Feasibility				SII						
L					4	Evaluate and Correct for Error Sources						S//				
L					5	Develop Calibration Functions										
	L				6	Quantify Sensor Performance										
L					7	Year 1 Report										
					Pha	ase 2 - Sensor Demonstration										
	L				8	Evaluate Optimized Sensor - Bench										
L	Ρ	Ρ			9	Evaluate Optimized Sensor - Test Cell										
			L		10	Evaluate Optimized Sensor - Vehicle										
L					11	Evaluate Optimized Sensor - Accuracy										
L					12	Develop Commercialization Plans										
L					13	Year 2 Report										

Project Status

- Kick-Off 10/27/2015
- Phase I focused on sensor development and feasibility
- Close coordination with ORNL, Cummins, Corning, and DSNY
- Began catalyst bench testing in Q3
- Vehicle testing ahead of schedule in Q3
- Commercialization activities ahead of schedule

Work Completed

Work to be Completed

Milestone Achieved

Any proposed future work is subject to change based on funding levels

Approach – Project Milestones FY16 & FY17

Go/No-Go Decision Criteria Achieved – SCR Measurement Accuracy Target

	Milestone Summary Table											
Recipient Name: Filter Sensing Technologies Inc.												
Project Title: Adaptive Radio Frequency Controls and Diagnostics for Advanced Catalyst Systems:												
Enabling Improved Fuel Efficiency and Reduced System Cost												
Task	Task Titlo	Туре	Mile-	Milastona Description	Milestone	Milestone						
No.		Type	stone	intestone Description	Verification	Date	Quarter					
1.0	Project Management and Planning	Milestone	M 1.0	Plan Updated	Team Review	Mo 3	CPLT					
2.0	Develop RF Sensors	Milestone	M 2.0	Sensors Developed	Team Review	Mo 6	CPLT					
3.1	Ammonia Storage on SCR	Milestone	M 3.1	NH ₃ Feasibility Report	Team Review	Mo 9	CPLT					
3.2	Oxygen Storage on TWC	Milestone	M 3.2	O ₂ Feasibility Report	Team Review	Mo 20	CPLT					
3.3	HC Storage on Traps	Milestone	M 3.3	HC Feasibility Report	Team Review	Mo 21	Q7					
3.4	Multi-Function SCR+Filter	Milestone	M 3.4	PM/NH ₃ Feasibility Report	Team Review	Mo 19	Q7					
4.0	Evaluate and Correct for Error Sources	Milestone	M 4.0	Errors Quantified	Team Review	Mo 21	CPLT					
5.0	Develop Calibration Functions	Milestone	M 5.0	Calibration Complete	Team Review	Mo 21	CPLT					
6.0	Quantify Sensor Performance	Milestone	M 6.0	Performance Quantified	Team Review	Mo 21	CPLT					
7.0	Phase 1 Report	Milestone	M 7.0	Report Submitted	Team Review	Mo 20	Q7					
	Go/No-Go Decision Point	Decision	D 1.0	Targets Achieved	Team Review	Mo 18	CPLT					
8.0	Evaluate Optimized Sensor - Bench	Milestone	M 8.0	Bench Test Complete	Team Review	Mo 24	Q8					
9.0	Evaluate Optimized Sensor - Test Cell	Milestone	M 9.0	Dyno Test Complete	Team Review	Mo 27	Q9					
10.0	Evaluate Optimized Sensor - Vehicle	Milestone	M 10.0	Vehicle Test Complete	Team Review	Mo 30	Q10					
11.0	Evaluate Optimized Sensor - Accuracy	Milestone	M 11.0	Accuracy Quantified	Team Review	Mo 30	Q10					
12.0	Develop Commercialization Plans	Milestone	M 12.0	Plans Developed	Team Review	Mo 30	Q10					
13.0	Phase 2 Report	Milestone	M 13.0	Report Submitted	Team Review	Mo 30	Q10					

No-Cost Time Extension: 6 Months for budget period 1 granted 11/2016

Cis

Extends BP 1 to 5/31/2017 to complete Phase I testing with project partners

Any proposed future work is subject to change based on funding levels

Approach – Quantify Sensor Performance and Fuel Savings

Team Member Contributions

- Develop RF sensors
 - Sensor calibration
 - Catalyst aging

- Production gas sensors
 - Storage models
 - Gravimetric (PM/Ash)

- Advanced substrates
 - Model catalysts
 - HD engine dyno testing

- Production gas sensors
- Emissions bench (FTIR)
- Storage models
- Emissions bench (FTIR)
- Adv. Instruments Spaci-MS
- Catalyst models
 - Stock Volvo/Mack SCR controls
 - On-road durability
 - System requirements

8

- Production sensors
- In-house models

CORNING

- Catalyst bench testing
- Model validation
- Engine dyno testing

- On-road fleet test
- Volvo/Mack trucks (SCR+DPF)
- 18 Months total, 2 trucks

Performance Metric

[®] FIAT CHRYSLER AUTOMOBIL

Daimler Trucks North America

- OEM technical advisors
- Catalyst samples
- Design of experiments
- Parallel testing

Accomplishments – Production-Intent Sensor Developed

RF Control Unit and Antennas

Performance	
Scan Frequency Range:	0.4 to 2.5 GHz
Measurement Update:	1 -10 Hz typical
Measurement Method:	Magnitude and Phase
Specifications	
Electrical:	6.5 to 36 V
Measurement Update:	1 -10 Hz typical [User Defined]
Communication:	CAN J1939
Mass:	175 g Max [Sensor Module]
	125 g Max [Antennas with 2m Cable]
Envelope:	131 x 107 x 27.3 mm [Sensor Module]
	150 mm Max Antenna Length

Commercial Milestones Achieved Ahead of Schedule – Acquired by CTS Corporation

- Ticker: CTS (NYSE)
- Founded: 1896, Chicago IL
- **Business:** CTS is a leading manufacturer of sensors, actuators and electronic components.
- Locations: 11 manufacturing locations throughout North America, Asia and EU.
- Number of Employees: ~4,000 Globally

Automotive RF Electronics Sensors & Actuators

Accomplishments – Catalyst Configurations Evaluated

Catalyst	Condition	Application	Baseline	Test Conditions	Facilities
SCR	Degreened	Cummins 8.9L ISL (2015)	N ₂ , Air 25 °C – 400 °C	NH ₃ Storage 150, 200, 250, 300, 350, 400°C	CTS ORNL
SCRF	Degreened	Non-Production [VW]	N ₂ , Air 25 °C – 400 °C	NH ₃ Storage 250°C	CTS
SCRF	Soot / Ash	Non-Production [VW]	N ₂ , Air 25 °C – 400 °C	NH ₃ Storage 250°C	CTS
TWC	Degreened	GM Malibu 2L DI (2016)	N ₂ , Air 25 °C – 400 °C	O ₂ Storage, Lean / Rich Pulses (C ₃ H ₈)	CTS ORNL
TWC	Degreened	Chrysler V8 (2016)	N ₂ , Air 25 °C – 400 °C	O ₂ Storage, Lean / Rich Pulses (C ₃ H ₈)	CTS
HC Trap	TBD	Non-Production	To be completed	To be completed	ORNL

General Catalyst Test Conditions

- Reference / baseline testing with air and inert conditions to characterize RF signal response to catalyst over temperature range
- SCR: 5-13% H₂O, CO₂; 0-10% O₂; 0-2% CO, H₂; 0-800 ppm HC, NH₃
- SCRF soot/ash loading from exhaust of diesel engine and burner
- TWC: 5-13% H₂O, CO₂; 0-10% O₂; 0-2% CO, H₂; 0-800 ppm NO; 0-0.3% HC

Same catalyst core samples used with all project partners and for engine testing in Phase II.

Accomplishments – RF Cavity Simulations Validated

Results of Cavity Electric Field Simulations

Higher Order Modes

- Electric field distributions provide spatial sensitivity to monitor local storage of gas species
- Potential to monitor location of stored ammonia (front → back of SCR)

Accomplishments – Multiple Bench Reactor Systems

ORNL Bench Reactor Setup for RF Calibration

RF Sensor Calibration

- ORNL bench reactor
- Gas mixture control and FTIR measurements pre- / post- catalyst
- Standard test protocols for catalyst preconditioning, loading, and desorption tests
- Calculated NH₃, O₂ storage levels supplied as reference for RF sensor calibration of SCR and TWC
- Standard core samples used at ORNL and CTS

CTS Reactor Setup Mimics Production System Configuration for Performance Benchmarking

Accomplishments – RF Response to Ammonia Storage on SCR

Ammonia storage measurements demonstrated on laboratory bench reactor

Catalyst Bench Reactor Testing Confirmed NH₃ Impact on RF Signal

- Maximum 5 dB reduction in signal amplitude with NH₃ storage
- Fully-desorbed state (sharp resonant modes) No ammonia storage
- **S** Reduction in amplitude and shift in frequency with ammonia storage

Accomplishments – Temperature Compensation of SCR

RF sensor calibrated for SCR performance using a series of desorption isotherm tests

- Catalyst loaded to saturation, then ammonia injection is reduced to allow for desorption
- High-temperature SCR regeneration performed between desorption isotherms
- RF response measured at each temperature to allow for incorporation of temperature compensation

Accomplishments – Ammonia Inventory Measurement with RF

Go / No-Go Decision Criteria Achieved:

- Developed RF calibration for ammonia storage measurements including temperature compensation within 10% of full-scale
- Calibrated RF sensor for the SCR has a mean measurement error of 0.000 g/L and a standard deviation of 0.036 g/L

15

Accomplishments - RF Measurement with SCR Confirmed On Vehicle

Fleet Testing On Mack and Cummins-Powered Vehicles Since May 2016

Cis

Phase Shift Correlated with Ammonia Storage

- Testing started with DSNY ahead of schedule
- Two Mack MP-7 equipped HD vehicles
- One Cummins ISB equipped MD vehicle
- New York City urban drive cycles

Accomplishments – Analysis of RF Sensor Noise Factors

Controlled variation of individual gas species to evaluate impact on RF response

Accomplishments - Oxygen Storage Readily Detected on TWC

Oxygen storage measurements confirmed on laboratory bench reactor

Large RF Response to Change in TWC Oxidation State

- Lean Conditions: Oxygen storage inhibits Ce conductivity (sharp resonances)
- Rich Conditions: Oxygen depleted state results in large dielectric loss
- Impact on specific resonances function of local electric fields

Accomplishments - Response to TWC O₂ Storage / Depletion

RF Resonances

- RF resonance response to O₂ depletion
- Modes respond quickly when HC added to system and stored O₂ on catalyst is consumed
- Characteristics of each mode vary, possibly indicating spatial sensitivity of signal to O₂ consumption

Accomplishments – Oxygen Inventory Measurement on TWC

TWC Calibration Developed

- Developed RF calibration for oxygen storage measurements including temperature compensation within 10% of full-scale
- Calibrated RF sensor for the TWC has a mean measurement error of 0.000 g/L and a standard deviation of 0.040 g/L

Response to Previous Year Reviewer's Comments

Approach and Collaboration

Approach

- Good approach building on previous successful RF soot (DPF) project
- Excellent extension of the RF technology, research covers the bases to develop/test technology, with a strong project team.

Collaboration and Coordination

• Good collaboration with input from National Labs, OEMs, Suppliers

Accomplishments and Future Work

Accomplishments

- Good progress for a new project
- Initial phase focused on sensor feasibility and testing, with promising results

Future Work

- Need to focus on link between sensor development and fuel savings
- Good R&D plan to achieve project goals

DOE Relevance and Objectives

Fuel Consumption and Efficiency

- Reducing uncertainty in aftertreatment effectiveness will improve efficiency
- Cost effective solution, maximizing aftertreatment performance will aid in reducing fuel consumption
- Demonstration of fuel savings needs to be focus, emphasize pathway from sensor development to fuel savings

Collaboration and Project Coordination

OEM Technical Advisors

- Input on project direction, data review, sensor specifications
- Spans LD/HD, diesel & gasoline

Core Project Team

- FST/CTS project lead: developing RF sensors for distribution to project team
- ORNL lead catalyst reactor testing in Year 1 and conduct LD engine testing in Year 2
- Corning provides catalyst and substrates in Year 1 and HD engine testing in Year 2 (cost share)

Vehicle Fleet Testing

- Conducted with NYC Sanitation HD vehicle fleet
- On-road durability and performance evaluations

22

Remaining Challenges and Proposed Future Work

Current Status

- RF sensing performance and feasibility evaluations for clean diesel, lean gasoline, and LTC catalyst applications is near completion in Phase I.
- Go/No-Go decision criteria achieved demonstrated direct measurements of ammonia storage on SCR catalysts.

Phase II Sensor Demonstration (2017/18)

- Distribute Optimized Sensor to Team for:
 - Bench Reactor Validation
 - Engine Dyno Test: HD & LD
 - Vehicle Fleet Test: HD
- Quantify Overall System Performance
- Develop Estimates of Overall System Efficiency Gains via RF Control
- Quantify System-Level Fuel Savings

Focus on Efficiency Gains / Fuel Savings

Preparations for full-size SCR dyno test at Corning (Diesel) and ORNL (Lean Gasoline)

Summary

Phase I Target for SCR Measurements Achieved

- Production-intent sensor developed and catalyst feasibility confirmed
- Clear path to commercialization to meet the overall project objectives

Accomplishments in Phase I – Sensor Application Feasibility

- Applied models for RF cavity response to guide experimental design and data analysis
- Coordinated experiments with industry and national lab project team
- Confirmed feasibility to directly measure stored ammonia on SCR and oxygen on TWC
- Developed initial SCR and TWC RF sensor calibrations to meet project accuracy targets
 - Demonstrated NH₃ storage measurements from 0 to 2.5 g/L with $2\sigma = 0.072$ g/L [lab]
- Started vehicle fleet testing on heavy-duty and medium-duty vehicles ahead of schedule
- Conducted systematic analysis of noise factors for RF measurements

Outlook and Project Impact

• RF sensing may provide a paradigm shift for emissions control by providing a direct measurement of catalyst state – optimize control and system diagnostics

Robust and low cost emission controls are needed to overcome key barriers
limiting the widespread use of advanced combustion engines

Thank You

ACE099 AMR 2017
Technical Backup Slides

Challenge: Determination of Catalyst State

Electrical Power or Control Signal

- Current systems rely on (1) gas sensor measurements and (2) models (indirect)
- RF-based approach provides direct measure of catalyst

state

······ Gas Flow

Signal Affected by Dielectric Properties of Exhaust Species

 \mathcal{E}

$$\kappa = \frac{\mathcal{E}}{\mathcal{E}_0} = \mathcal{E}_r = \mathcal{E}_r' - j$$

$$\tan \delta = \frac{\varepsilon_r}{\varepsilon_r}$$

Example of RF System Operation: Transmission

- Multiple modes exist in the cavity depending on frequency of operation
- Mode structure (field profiles, direction) depend on the geometry and the frequency

Resonant Modes Provide Spatial Information

TEOI

TE11

λe=1.640a

λe=3.412 a

Literature Review – Relevant Prior Work

SCR:

Reflection (1 antenna) for unloaded and ammonialoaded conditions at 300 °C

S. Reiß, D. Schönauer, G. Hagen, G. Fischerauer, R. Moos, Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method, Chem. Eng. Techn., 34, 791-796 (2011)

TWC:

Reflection (1 antenna) for oxygen storage on threeway catalyst at 400 °C

S. Reiß, M. Spörl, G. Fischerauer, R. Moos, Realabgastauglichkeit einer HF-gestützten Automobilabgasdiagnose, G. Gerlach, P. Hauptmann (Hrsg.), 9. Dresdner Sensor-Symposium, 7.-9. Dezember 2009, Dresden, p. 263-266