Model Development and Analysis of Clean & Efficient Engine Combustion

2017 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

> Russell Whitesides (PI), Nick Killingsworth, Guillaume Petitpas, & Matthew McNenly

June 7, 2017

LLNL-PRES-729633

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

Timeline

 Ongoing project with yearly direction from DOE

Budget

- FY15 funding: \$508K
- FY16 funding: \$508K
- FY17 funding: \$441K

Barriers

- Inadequate understanding of the fundamentals of HECC
- Inadequate understanding of the fundamentals of mixed mode operation
- Computational expense of HECC simulations

Partners

- AEC Working Group:
 - Sandia NL, GM, Oak Ridge NL
- Industrial:
 - Convergent Science Inc.
 - Nvidia

Relevance – Enhanced understanding of HECC requires models that couple detailed kinetics with CFD

Objectives:

- Advance state-of-the art in engine simulation
 - Enable detailed, predictive models
 - Reduce time to solution
- Get tools into the hands of industry

VT multi-year program plan barriers addressed:

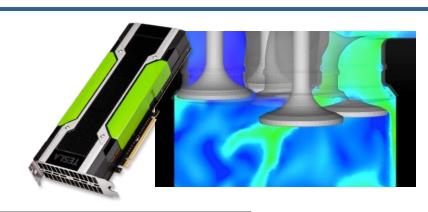
- A. Lack of fundamental knowledge of advanced engine combustion regimes
- C. Lack of modeling capability for combustion and emission control
- D. Lack of effective engine controls

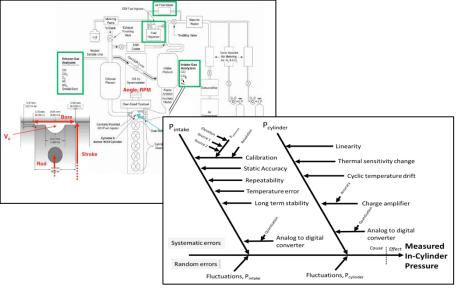
Accurate simulations yield improved engine designs.

Approach – Work with partners to achieve objectives.

- Development and deployment of fast-chemistry solvers in engine CFD
- Assemble uncertainty quantification framework for robust error bounds on experimental measurements for comparison to models

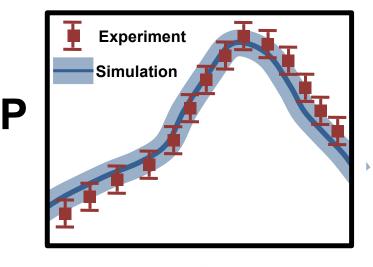
Milestones:


- 1. Demonstrate use of fast-chemistry solver by industrial engine partner.
- 2. Publish uncertainty-quantification study and software.



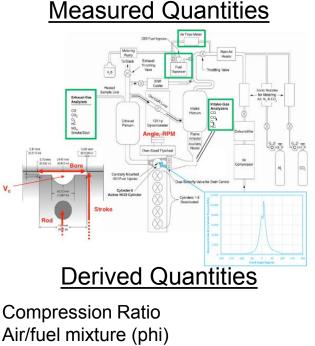
Accomplishments presented at 2016 AMR

- Practical GPU use in engine simulation
 - Heterogeneous & distributed processing
 - New algorithms make best use of available computing resources
- Uncertainty Quantification of HCCI engine test cell
 - First effort for detailed UQ in engines
 - Uncertainty values vital to comparison of experiments with models



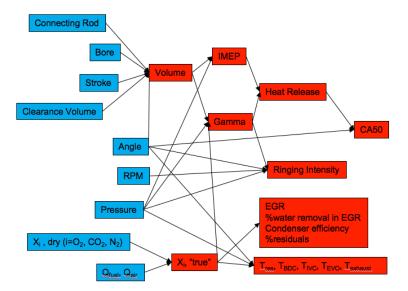
Importance of Uncertainty Analysis in Engine Research

- Comparisons among experiment and between experiments and simulations still suffer due to lack of confidence intervals
- Proper confidence interval estimation requires detailed accounting of uncertainty sources
- HCCI experiments at Sandia National Laboratory provide a good platform for this type of analysis in engine context
 - Long history of experiments
 - Rigorous experimental practice
 - Homogeneous operation



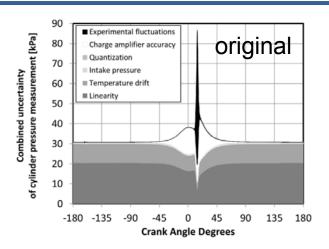
Uncertainty analysis of HCCI experiments at SNL (1/3)

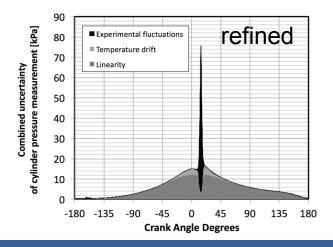
- Began analysis in FY16 working to identify as many sources of uncertainty as we could
- Worked with J. Dec and J. Dernotte at SNL to understand the experiments and their data processing/analysis approach
- Developed framework for Uncertainty Quantification/Uncertainty Propagation in HCCI/LTGC engine experiments
- Framework analysis based on conservative assumptions and manufacturers specifications for sensors/transducers



Compression Ratio Air/fuel mixture (phi) T_{IVC}, T_{EVO}, T_{exhaust}, T_{residuals}, T_{BDC} X_i (actual) %residual, %EGR %water removal in EGR loop %water removal upstream gas analyzers IMEP, heat release, Ringing Intensity

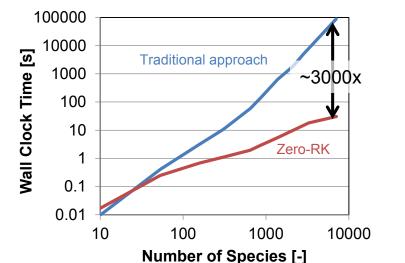
Uncertainty analysis of HCCI experiments at SNL (2/3)

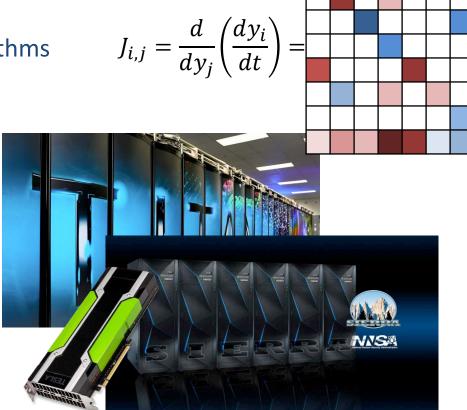

- Using the developed framework allows us to study uncertainty relationships and sensitivities of key quantities (e.g. IMEP, CA50, PRR).
- Framework published in this years SAE Congress (SAE 2017-01-0736) and code open sourced and available at <u>https://github.com/LLNL/UQ_combustion</u>
- We want feedback from engine community and hope that UQ becomes more common among engine researchers.



Uncertainty analysis of HCCI experiments at SNL (3/3)

- Currently refining our estimates of sensor uncertainty
 - Close collaboration with J. Dec on sensor calibration
 - Accounting for actual sensors being used as opposed to manufacturers specifications
- Refined estimates for sources of uncertainty significantly reduce confidence interval for pressure measurement
- Multiple studies in the works making use of the engine UQ framework





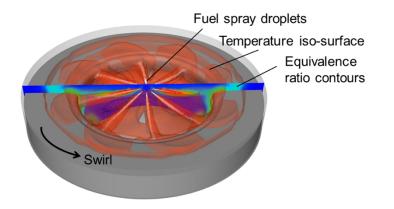
Fast-solver CFD Development Overview

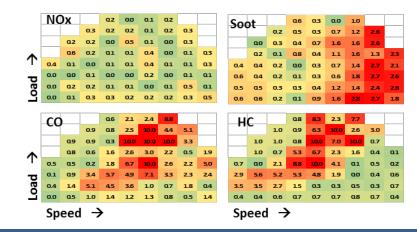
- Integrating work in ACS076 into engine CFD codes (collectively: Zero-RK)
- Dramatic speed-up with new algorithms
- Targeting current and future architectures

Technical Accomplishments

Developing/Deploying Code with GM and ORNL

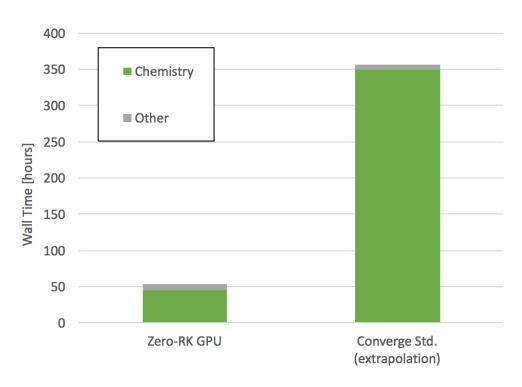
- Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge awards (ALCC)
- FY16 Diesel virtual engine calibration
 - Focused on emissions predictions
 - Range of mechanisms to probe effect of chemical detail
 - OLCF User Meeting Best Poster PI
- FY17 HCCI/LTGC ignition chemistry
 - Low-temperature chemistry vital
 - Multiple fuel surrogates





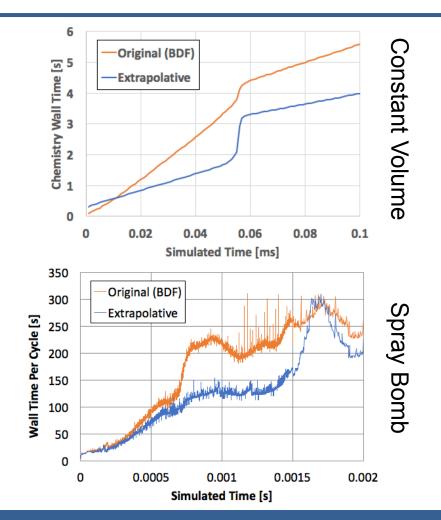
LLNL Fast-solver Integral to ALCC Work

- GPU algorithms a key enabler of ALCC award work
- ALCC award provides world-class computing capability (>25 million CPU-hours)
- Over 1,600 engine simulations with detailed chemistry
- Creating new capability, and developing fundamental knowledge of engine combustion



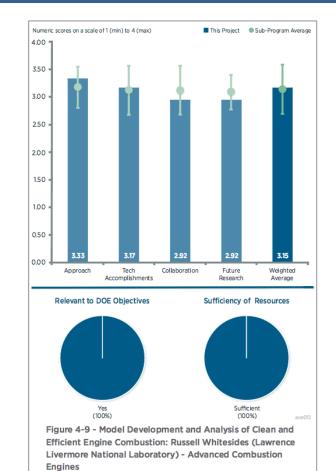
CFD Benefit/Capability of GPU Fast Chemistry Solver

- Fast-solver + GPU pushes limits of simulation capability
- First reported simulations to include >1,000 species in engine simulation (or any reacting flow simulation)
- Detailed chemistry vital for ignition and emissions predictions
- Further acceleration still possible



Diesel sector simulation 1034 species chemical mechanism Every-cell chemistry

Continuing Effort to Accelerate Engine CFD


- Working on alternative integration techniques with specific advantages for CFD
- Motivated by interaction with D. Haworth (PSU)
- Implemented extrapolative technique that has less "startup" cost
- GPU implementation included

FY2016 Reviewer's Comments and Our Response

- Code platform/availability:
 - Software has been designed for flexibility
 - Working on licensing/distribution
- Broader collaboration:
 - Working more closely with collaborators this year on both research fronts
- Multi-component fuels:
 - Part of ALCC HCCI/LTGC work
 - Enabled by fast-solver development

Mostly positive comments and above average score.

Collaboration – Ongoing interactions with industry, national laboratories, and universities

- Sandia National Laboratory J. Dec Uncertainty Quantification
- General Motors/Oak Ridge National Lab Ron Grover/K. Dean Edwards ALCC
- Convergent Science Inc. (CSI) Current development platform for
- NVIDIA Hardware, software and technical support for GPU chemistry development
- Advanced Engine Combustion (AEC) working group twice annual research update meetings and informal collaboration

Remaining Challenges and Barriers

Fast-solver distribution/availability

- Currently only available to small list of partners
- Research code; still requires tech. guidance/support
- Further simulation acceleration needed
 - 1000 species feasible, but challenging
 - Want to include more physics (better turbulence, spray models, etc.)
- Large model uncertainties
 - Tradeoffs in fidelity required for feasibility
 - Error incurred by approximations not quantified

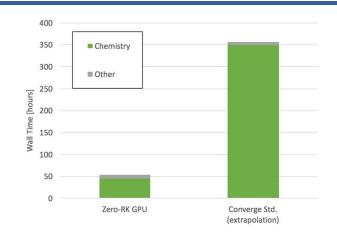
Proposed Future Research

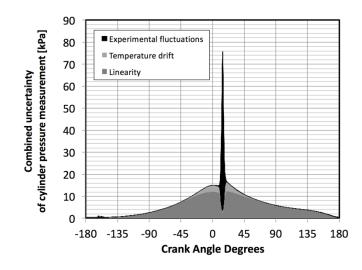
- FY17
 - Work with LLNL Industrial Partnerships Office on licensing/distribution
 - Analyze performance of two/three alternative time integrators in CFD
 - Continue refinement of UQ analysis including cost-benefit analysis of sensor improvements

• FY18

- Implement smart solver (best integrator chosen for each reacting zone)
- UQ in reacting flow CFD

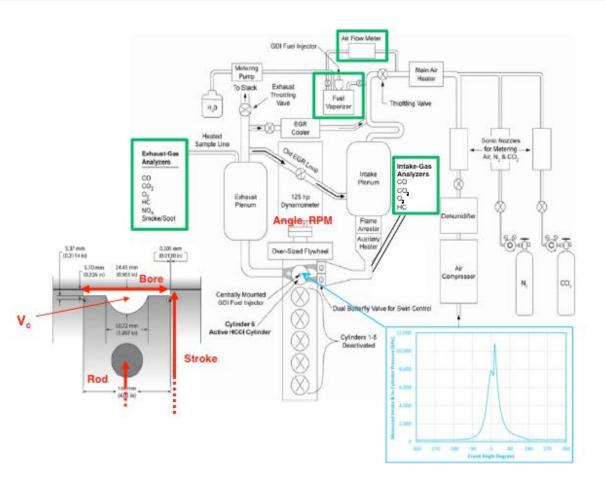
• FY19+


- Reduction in time-to-solution for engine CFD in both super-computer and workstation hardware
- Methods and practices for developing predictive models and simulations


Any proposed future work is subject to change based on funding levels

Summary: Our modeling work is impacting present and future engine research

- Chemistry acceleration in CFD:
 - Brings new capability to engine CFD
 - Integral to start-of-art engine simulation campaign
 - Working toward wider availability
- Uncertainty analysis:
 - Published uncertainty framework study
 - Open sourced software for other researchers to use and improve: <u>https://github.com/LLNL/UQ_combustion</u>
 - Refined pressure uncertainty measurements with J.
 Dec (SNL) with plans for further studies as collaboration.



Technical Backup Slides

Lawrence Livermore National Laboratory

Uncertainty Quantification Background: Test cell diagram and quantities of interest

Measured Quantities

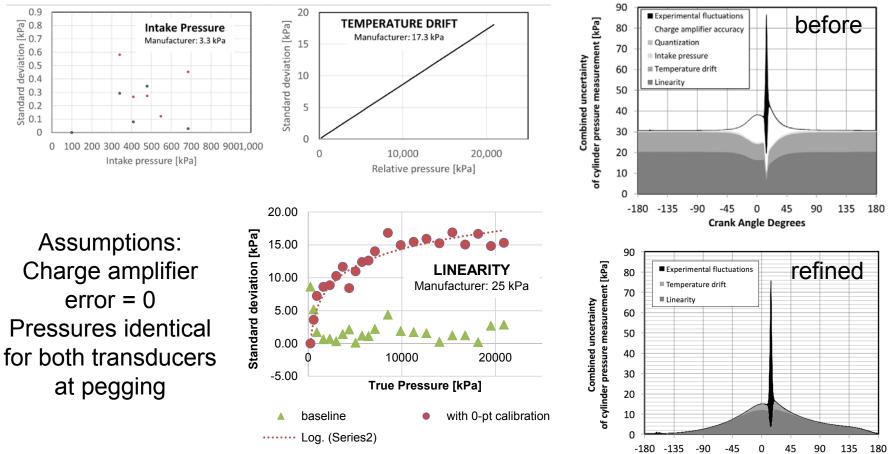
Crank angle Engine speed Geometry (Bore, stroke, rod, V_c) Intake air and fuel flow X_i (dry), i=CO,CO₂,O₂, Nox, HC Intake pressure In-cylinder pressure

Derived Quantities

Compression Ratio Air/fuel mixture (phi) T_{IVC}, T_{EVO}, T_{exhaust}, T_{residuals}, T_{BDC} X_i (actual) %residual, %EGR %water removal in EGR loop %water removal upstream gas analyzers IMEP, heat release, Ringing Intensity

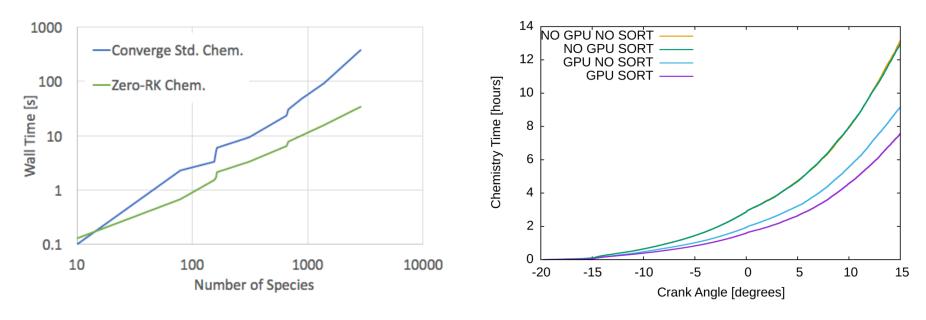
Lawrence Livermore National Laboratory

Uncertainty Quantification Background: Measurement uncertainty estimates for HCCI/LTGC operation at SNL


Geometr
Pressure
position
Com

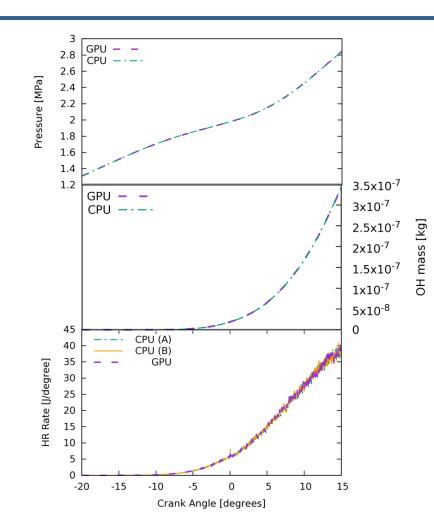
>

Experimentally measured quantity	Typical Mean Value	Experimental error	Assumed Distribution	Standard uncertainty
Bore	0.10223 m	±3e-6 m	Uniform	1.7e-6 m
Stroke	0.12 m	±2.5e-5 m	Uniform	1.4e-5 m
Connecting rod	0.192 m	±2.5e-5 m	Uniform	1.4e-5 m
Clearance volume	75.77 mL	±0.25 mL	Uniform	0.14 mL
Crank angle	0 to 360 CAD	±0.05 CAD	Uniform	0.03 CAD
Engine speed	1200 RPM	±24 RPM	Normal (95%)	12.2 RPM
BDC Pressure	240 kPa	±6.62 kPa	Normal (95%)	3.31 kPa
In-cylinder Pressure	240 to 10,900 kPa	±60 to 320 kPa	Normal (95%)	31 to 162 kPa
Air flow intake	10.98 g/s	±0.02 g/s	Normal (95%)	0.01 g/s
Fuel flow intake	0.59 g/s	±2% (relative)	Normal (95%)	6 mg/s
CO ₂ intake	5.59%	±0.075 % (absolute)	Normal (95%)	0.04%
O ₂ intake	12.5%	±0.22 % (absolute)	Normal (95%)	0.11%
CO ₂ exhaust	11.4%	±0.16 % (absolute)	Normal (95%)	0.08%
O ₂ exhaust	5.01%	±0.22 % (absolute)	Normal (95%)	0.11%
Combustion efficiency	98.42 %	1 % (absolute)	Triangular	0.4%


Uncertainty Quantification Background: Data and Methods Used to Refine Estimate for Pressure Uncertainty

Crank Angle Degrees

Fast-chemistry Solver Performance in CFD


CPU only scaling with comparison to ConvergeCFD built-in chemistry (5.5x faster at 1000 species)

Performance in test case with and without GPU enabled (1.7x faster with GPU (16 CPU + 2GPU)

Fast-chemistry on GPU Verification

- Outputs for all quantities of interest overlap
- Heat release (HR) rate is noisy based on CFD time step selection, so match is not exact but also true in comparing two CPU runs.

