Review and Evaluation of Water Detritiation Technologies for Watts Bar Primary Cooling Water

Kriston Brooks Gary Sevigny Ed Love

1

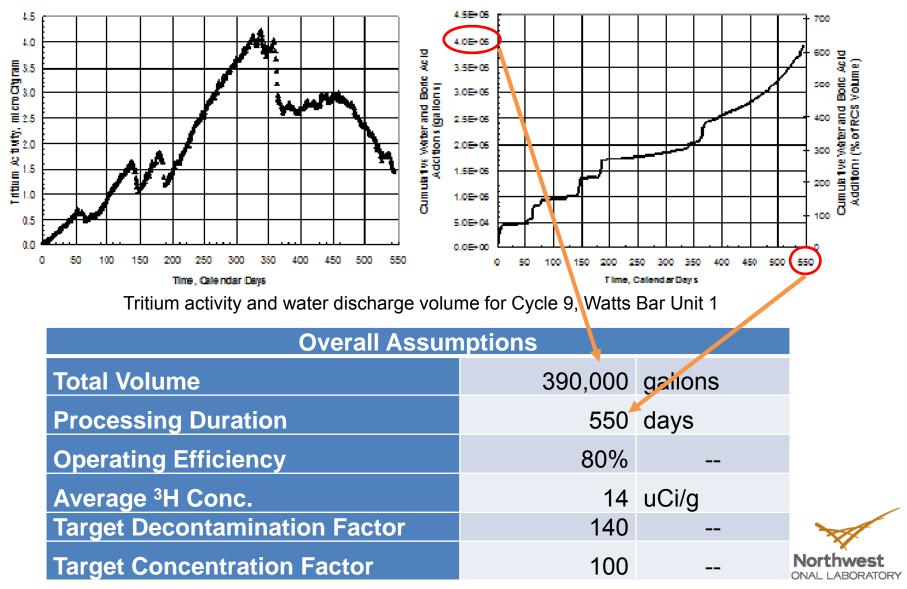
Pacific Northwest National Laboratory

May 10, 2017 EMSL Auditorium, PNNL

PNNL-SA-125901

Background

- Tritium in the primary cooling water of the Watts Bar Nuclear Reactor
 - not captured nor treated but released to the river
 - Tritiated water concentration is well below the EPA's drinking water standard of 20 pCi/g met after mixed with the river
- Increased number of TPBARs may increase the amount of tritium in the cooling water
 - reactor contains 368 TPBARs, but 1504 will be used during the "equilibrium" phase
 - higher tritium levels may necessitate other pathways for tritiated water disposition



Report Purpose

- Identify and evaluate disposal pathways for disposition of tritium-containing primary cooling water from Watts Bar
 - include the current approach of direct disposal into the Tennessee River
 - consider alternatives to reduce tritium prior to discharge
 - concentrated tritium stream will be grouted and disposed of in a commercial near-surface burial site
 - costs are rough order of magnitude estimates only

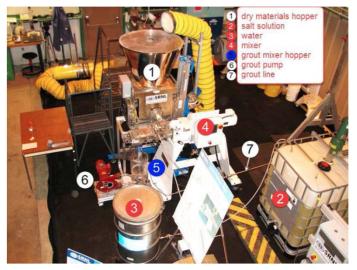
Conditions Considered

0.6 gpm water flow rate

Previous Work

- This work is based previous tritium mitigation alternatives analyses:
 - Hanford Site Wastewaters (1997, 2004, 2009)
 - Savannah River Site (1998)
 - CANDU Reactors (1984, 1990)
 - Fukushima Daiichi Nuclear Plant (2013, 2014)
 - Recent literature
- Use of previous cost estimates from literature:
 - adjusted to 2015 dollars
 - system sizing based on six-tenths-factor rule
 - processes for isotope enrichment are "in most instances . . indifferent to the feed concentration." (Miller 1998)
 - 10 ve en lifetime din en denne sistien
 - 10 year lifetime, linear depreciation

Approach


- When Literature Cost Not Available
 - Operating costs based on electricity and natural gas costs
 - Facility footprint for nuclear facility estimate \$3500/ft²
 - Use available current cost data from DOE Energy Efficiency and Renewable Energy (EERE)
 - Electrolysis, Hydrogen Liquefaction, Fuel Cells
- Estimate of Technology Readiness (TRL) from DOE EM

TRL Level	Scale of Testing	Fidelity	Environment	
9	Full	Identical	Operational (Full Range)	
8	Full	Identical	Operational (Limited Range)	
7	Full	Similar	Relevant	
6	Engineering/Pilot	Similar	Relevant	
5	Lab/Bench	Similar	Relevant	Northwest
3-4	Lab	Pieces	Simulated	Northwest DNAL LABORATORY
1-2	None	Paper	Simulated	attelle Since 1965

Tritium Disposal Alternatives— No Tritium Separation

Direct Disposal into the River (\$0.7/gallon)

- Only analysis and sampling required
- Grout Disposal of Tritiated Water (\$12/gallon)
 - Use phosphate/sulfate waste grout (high water)
 - 2018 disposal costs for Waste Control Specialists (WCS)
 - Equipment cost based on grouting study and SRS Engineering Scale Continuous Processing Facility (ESCPF)

Characteristic	Cost	Units			
Type of Grout	Phosphate/Sulfate Waste				
Ratio cement to water	7.5	lb/gallon water			
Density of Cement	11.7	lb/gallon grout			
Composition of Solids	41 wt% Portland cement 40 wt% Fly Ash 11 wt% Attapulgite clay 8 wt% Indian Red Pottery Clay				
WCS Class A LLW Base Disposal Cost	\$876	\$/cubic yard			
WCS Class A LLW Drum Surcharge	\$417	\$/cubic yard			
Water Shipping Cost	\$2.50	\$/gallon			
* WCS costs area based on Year 5 (2018)					

Combined Direct Disposal and Grout Disposal

- Assume 1/3 of water is grouted and 2/3 disposed of into river
- Reduced cost: \$5.5/gallon

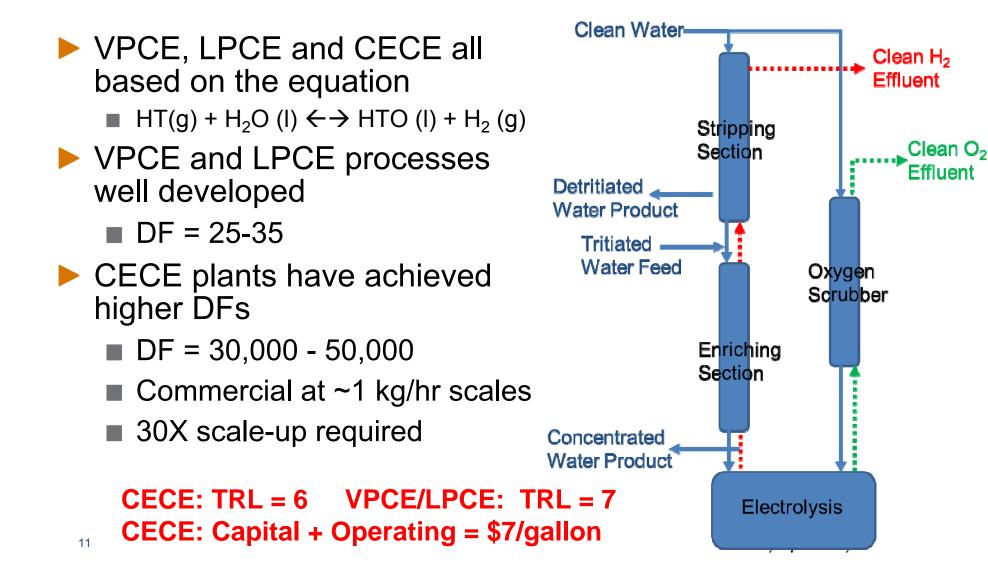
NATIONAL LABORATORY

Tritium: Hydrogen Separation Factors for Developed Tritium Removal Technologies

	Low Tem	perature	High Temperature		
Dual Temperatures Processes	T (°C)	Т/Н	T (°C)	Т/Н	
Water Bithermal	60	5.289	150	2.918	
Girdler Sulfide	32	3.599	130	2.563	
Ammonia Bithermal	-30	16.1	40	8.6	
Single Temperature Processes	T (°C)	T/H			
Catalytic Exchange	60	5.289			
Water Distillation	50	1.059			
Electrolysis	50-80	15			
Cryogenic Distillation	-250	1.8			
Graphene Oxide Membrane	100	1.6			
Adsorption Processes	RT	1.4			

Operating and Capital Costs Estimated for these Technologies

Water Distillation

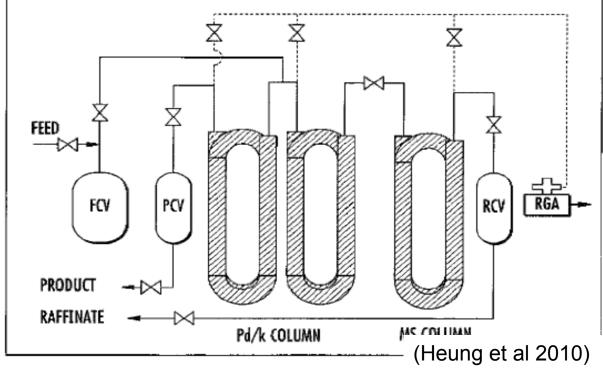

Lowest separation factor

- High reflux \rightarrow high heat usage + large diameter columns
- > 200 theoretical plates → tall columns
- Use of heat pump and improved packing address column size and heat requirements
- Well developed technology
- \blacktriangleright Working with water \rightarrow Very safe

Capital + Operating = \$19/gallon TRL = 7

Water/Gas Catalytic Exchange: Vapor Phase, Liquid Phase, or Combined Electrolysis

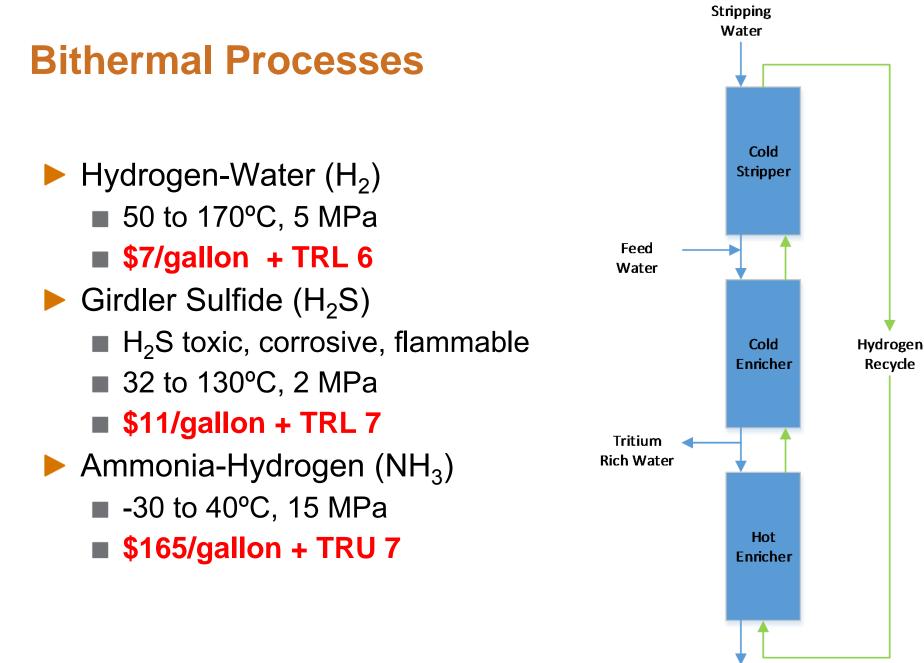
Facilities Use Water/Gas Catalytic Exchange


Facility	Technologies	Input Capacity, gpm	Input ³ H, µCi/g
Darlington, TRF	VPCE	1.6	30,000
Grenoble	VPCE	0.1	3000
AECL Test	LPCE	0.03	23,000
Chalk River, TEP	LPCE	0.09	35,000
Wolsung	LPCE	0.44	10,000-60,000
Mound	CECE	0.09	Unknown
Mol	CECE	0.007	2×10 ⁻³
KFK	CECE	0.004	100
FUGEN	CECE	0.004	4000

Watts Bar Application: Flow Required = 0.6 gpm Input ³H, μCi/g = 14

Thermal Cycle Adsorption Process (TCAP) + Electrolysis

- Semi-continuous temperature swing chromatographic process
- Tritium concentrates at far end of Pd/k column & protium concentrates at far end of MS column
- Used for tritium purification


TCAP-E Cost Estimate

Estimate includes cost of electrolysis, electricity and heat for cooling and heating, Pd metal cost, facility cost, and tritium disposal

	Pd/k Column	MS Column	Units	
			LH ₂ /kg bed /	
Throughput Rate	12.8	40.4	cycle	
Mass fraction Pd	27%	0%		
Temperature Differential Pd/k				
Bed	200	90	°C	
Cycle time	10	min/cycle		
Absorbent Fractional Heat				
Load	50			
COP for Cryocooling	0.			
Footprint of Mini-TCAP (4 sl/cycle)	18		ft ²	
		5		

Capital + Operating = \$17/gallon TRL = 6 Pacific Northwest NATIONAL LABORATORY

14

Treated Water

Other Processes Evaluated

Multiple Electrolysis Cycle Process

Feed electrolyzed 9 times for DF = 10,000, CF = 100

Use fuel cells to recover some electricity

• Cell concentration = $\frac{1}{\sqrt{\alpha}} * H2$ Product Concentration

\$22/gallon + TRL 5

- Cryogenic Distillation
 - Issues with safety, purification, liquefaction
 - \$9/gallon + TRL 6
- Graphene Oxide Membrane
 - Direct tritiated water clean-up
 - Low energy, but extremely high capital cost
 - \$227/gallon + TRL 3

Separation Techniques Not Costed

Low TRL / Research Level Techniques

- Selective Laser Excitation (fluoro- and chloro-alkanes)
- Freeze concentration ($\Delta T_{melt} = 4.49^{\circ}C$)
- Pressure swing adsorption (synthetic zeolites)
- Palladium membrane reactor (alternative electrolysis)
- Chromatographic adsorption (isotopically swamping of tritium loaded molecular sieve bed)
- Thermal diffusion (T gradient)
- Formic acid electrolysis (8X faster kinetics than water)
- Functionalized Zn and Cu MOF adsorption (increased cryogenic temperature)

Summary of Results

		Estimated Cost					
Proposed Technology	Technology Readiness Level	(\$/gallon)	< \$1	\$ 1-10	\$ 1-20	\$20-100	>\$100
Direct River Disposal	8	\$0.7					
Grout High Tritium Water	7	\$5.5					
Girdler Sulfide Process	7	\$11					
Grout Entire Volume	7	\$12					
Water Distillation	7	\$19					
Ammonia-Hydrogen Bithermal Process	7	> \$165					
Combined Electrolysis Catalytic Exchange	6	\$6.6					
Bithermal Hydrogen-Water Process	6	\$7.3					
Cryogenic Distillation Process	6	\$8.9					
Thermal Cycle Adsorption Process	6	\$17					
Multiple Electrolysis Cycle Process	5	\$22					
Graphene Oxide Membrane Process	3	> \$227					

Conclusions and Recommendations

- As expected, direct disposal of tritiated water into the river is least expensive
- Grouting 1/3 tritiated water with higher concentration significant reduces the overall cost of disposal
- Separating the tritium with CECE or bithermal H₂-H₂O may be less expensive than grouting entire volume
- Estimates are only rough order of magnitude. Additional design and costing analysis is needed.

