

Proudly Operated by Battelle Since 1965

VOLTTRON[™] History & New Features

JEREME HAACK

Pacific Northwest National Laboratory VOLTTRON[™] 2017

PNNL-SA-126080

PNNL Internal Development

- 2010 Future Power Grid Initiative
- Proposed to deploy intelligence into the Smart Grid using an agent platform
- No existing platforms met the needs
 - Security
 - Resource management
- Create a design document laying out platform and use cases
- Developed proof-of-concept simulations
- Develop prototype platform
- Deploy in instrumented home

- Re-implemented as Open Source
- Integrating platform for RTU Network Project
 - Coordinate behavior of rooftop HVAC units
 - Deploy researcher control algorithms
 - Provide single point of contact for
 - Appliances
 - Data historian
 - External resources
- Platform supported applications developed by
 - ORNL
 - LBNL
 - PNNL

VOLTTRON™ Timeline Highlights

VOLTTRON[™] Timeline

Pillars of VOLTTRON™

- Flexibility The platform should be flexible to meet requirements for a varied set of solution spaces
 - Deployment Can be installed on a variety of hardware with differing capabilities
 - Topology Can be arranged in differing topologies to meet the needs of specific implementations
 - Services Components of the platform can be easily added to/replaced
- Usability The platform should be both easy to use and straightforward to develop
 - Development It should be clear how to develop agents and services for the platform. Developers should have the insight and feedback to ease development
 - End User The platform should provide services that enable the development of high quality user interfaces to simplify deployment, installation, and management of the end solution.

Pillars of VOLTTRON[™] Contd.

- Scalability The platform should enable deployments at scale through proper deployment and division of resources
 - Number of platforms
 - Number of agents
 - Number of devices
- Security The platform must be secure to protect the devices being controlled and not provide a "backdoor"
 - Platform integrity The platform must protect itself from subversion
 - Infrastructure integrity Recommendations for securing the underlying resources used by the platform
- Interoperability The platform must work across vendors and protocols and provide capabilities to simplify these interactions
 - Data standard A standard data format and naming convention would allow applications written by different organizations to easily talk with each other and the devices being controlled.
 - Interface library A library of interfaces allowing the platform to communicate with a variety of devices through standard (Modbus, BACnet, etc.) or custom protocols.

Terminology

- Platform VOLTTRON™
- VAgent A process executing within the VOLTTRON[™] platform communicating on the message bus.
 - Python VAgents extending the BaseAgent class in the VOLTTRON™ code base
- Application One or more VAgents working with each other and platform services to achieve some goal
 - Fault Detection Agent
 - Intelligent Load Control
- Service A VAgent which provides a capability to applications and the platform. Services enable applications but are not an application themselves
 - Historians
 - Drivers
- Driver A VAgent which wraps communication with a device or devices. Drivers handle the specific protocols required and allow Applications to interact with devices via the message bus
- Historian A VAgent which subscribes to the message bus and stores messages for later retrieval. Historians can be implemented to work with any storage solution.
- Message Bus The integrating service which allows the actors in the platform to communicate with each other
- VIP A protocol built on top of ZeroMQ which allows for secure communication between platforms

Agents and Services

- The base agent provides the boiler plate code for interacting with the platform and provides a base for implementing applications
- Services such as drivers and historians are also built upon the base agent and provide their own frameworks for implementing specific instances

Overview of Improvements for 5.0

- Driver Improvements
- Toward Commercial Use
- General Performance Improvements
- Ease of Use
- Monitoring
- Scalable Deployment

Driver Improvements

- Device Configuration UI
 - Updated based on user responses
 - Allows for remote configuration of drivers through central server UI
 - Actively being used by external collaborators
- Updated BACnet libraries
- Better interaction with low power devices
- BACnet Scan improvement for large scale deployments

Database Improvements

- MongoDB updates including better indexing and time based binning
- New Crate Historian which provides better time series handling and integrates with existing user technology stacks
- Stress tested backup cache with 10+ GB of data collected during an outage
- New Forward Historian which ensures there is a receiving agent to store data
- Web interface for tying together services
 - Enables development of web applications that tie into the platform
 - Kisensum planning to use for SEP2.0 driver

Performance Improvements

- Stress tests of components
- Historian improvements
 - More efficient backup cache
- Message Bus performance improvement
 - Improved performance 4 10x without sacrificing security improvements
 - Closer to base ZMQ performance

VOLTTRON™ Management UI

- Replaced charting library with better performing and more stable library
- Better responsiveness

Ease of Use

- Multi-platform publish/subscribe
 - Ability to pub/sub to topics on other platforms without specifying IP address

Tagging Service

- Associate Haystack based tags to topics to simplify lookup and enable dynamic topic actions
- Improvements to VOLTTRON™ Configure
- Additional scripts including script for installing agents without needing to package first

Configuration Store

- Ability for agent configuration to be stored in the platform instead of needing a config file
- Allows for dynamic updating of agents

Monitoring

- AgentWatcher to notify of Agent death
- Threshold Agent to monitor points for out of bounds
- System monitor agent which can send logs back to VOLTTRON™ Central
- ► Alert Subsystem that agents can use to notify VOLTTRON[™] Central of off normal conditions
- Emailer Agent will notify administrators when an alert is sent (with time delay to prevent spam)
 - Actively being used in CETC to notify of potential data loss and agent health

Scalable Deployment

- New Install agent script that simplifies automated deployment
- Ansible script for configuring and managing secured VOLTTRONTM deployments

- Decouple the message bus from ZMQ
 - MQTT identified as potential first alternative bus
- Site Reliability Engineering Next step in scalable deployment
- RESTful interface
- Suggestions?

Proudly Operated by Battelle Since 1965

Support Mechanisms

VOLTTRON™ Resources

GitHub

- Codebase: <u>https://github.com/VOLTTRON/volttron.git</u>
- Issues and requests: <u>https://github.com/VOLTTRON/volttron/issues</u>
- Documentation: <u>http://volttron.readthedocs.io/en/develop/</u>
 - Documentation is per branch
- StackOverflow: <u>http://stackoverflow.com/questions/tagged/volttron</u>
- Slack: <u>https://volttron-community.slack.com</u>
- Email: volttron@pnnl.gov
- Bi-weekly office hours, email to be added
 - Recordings: <u>https://volttron.org/office-hours</u>