Biological and Chemical Upgrading for Advanced Biofuels and Products – FOA 0001085

Biogas Valorization: Development of a Biogas-to-Muconic Acid Bioprocess
WBS 2.3.2.201

2017 DOE BioEnergy Technologies Office Project Peer Review
March 7, 2017

Technology Area: Waste-to-Energy
Principal Investigator: Mike Guarnieri
Organization: National Renewable Energy Laboratory
• Targeted “development, improvement and demonstration of integrated biological or chemical upgrading technology for the production of substitutes for petroleum-based feedstocks, products, and fuels.”

• Diversification of BETO portfolio via… “production of chemicals from biologically or chemically derived intermediate feed streams, including biogases.”
Goal Statement

• **Project Goal:**
 – Establish a novel gas fermentation bioprocess for secretion of an array of fuel and chemical intermediates.
 • Develop a novel methanotrophic biocatalyst and fermentation configuration for the production of muconic acid from renewable biogas.

• **Outcome:**
 – Demonstration of an integrated, AD-biogas biological conversion process for the production of platform chemicals.
 • Achieve industrially-relevant production (>0.5g/L/hr) of muconic acid from biogas.

• **Relevance to Bioenergy Industry:**
 – Biological methane conversion offers a scalable, modular, and selective approach to biogas upgrading.
 • Deployment advantages over physical and chemical conversion strategies.
 – Development of robust biocatalysts and a high-efficiency, low-power reactor will enable facile integration with AD infrastructure and offers substantial biogas valorization potential.
 – Offers an alternative biochemical route to target enhanced yield via development of a novel reactor with an immobilized biocatalyst.
 • Non-growth state, enhanced mass transfer, low-power
 • Applicable to an array of gaseous substrates, including syngas, natural gas, CO2, etc.
Quad Chart Overview

Timeline

- Project start date: July, 2015
- Project end date: June, 2018
- Percent complete: 50%

Barriers

- **Bt-J: Catalyst Development**
 - Novel methanotrophic biocatalyst generation
- **Bt-K: Biochemical Conversion Process Integration**
 - Process-intensified configuration with immobilized biocatalyst FFR

Budget

<table>
<thead>
<tr>
<th>Partners</th>
<th>FY 15 Costs</th>
<th>FY 16 Costs</th>
<th>Total Planned Funding (FY 17->End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$273K</td>
<td>$927K</td>
<td>$1.3M</td>
</tr>
<tr>
<td>Farmatic, Inc</td>
<td>11% total cost share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolon, Inc</td>
<td>6% total cost share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCSU</td>
<td>3% total cost share</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partners

- **NREL (30%)**: Strain development, TEA
- **Farmatic, Inc (33%)**: AD-biogas provision and analysis.
- **NC State University (20%)**: falling film reactor design
- **Metabolon, Inc (10%)**: metabolomics and pathways mapping
- **San Diego State University (7%)**: metabolic flux balance analyses.
- **All**: Process Integration
• **Context:**
 – Process intensification offers an alternative means to target CCE.
 – Bioconversion offers advantages related to scalability, modularity, and selectivity.
 – Targeting production of muconic acid, which can be readily upgraded to adipic acid, a nylon precursor and critical GHG contributor.
 – This project leverages prior work conducted under ARPA-E and synergizes with other NREL BC project targeting production of organic acids.

• **Specific Project Goals:**
 – Characterization of biogas derived from domestic substrates and mitigation of biogas toxicity.
 – Generation of novel MA-producing methanotrophic biocatalysts
 – Development of genome-scale metabolic models for methanotrophic biocatalysts
 – Design and implementation of a high-efficiency, low power falling film reactor.
 – Generation of comprehensive techno-economic models for an array of methane feedstock inputs and organic acid outputs.
 – Demonstration of an integrated bioprocess for conversion of AD-biogas to MA
Management Approach

- Research guided by TEA, with related quarterly milestone metrics.
- Monthly team/quarterly WTE meetings, regular interaction with BETO and tech. staff.
- BETO Validation: initial (FY15), intermediate (FY17), and final (FY18).
- Synergistic interaction between BCU FOA, Biogas AOP, Strategic Analysis/WTE Program, carboxylate and lignin platforms, and related external activities (industry and interlab interaction).
Technical Approach

- **Approach:** Integrate AD, *in silico* modeling, metabolomics, strain engineering, and bioreactor design. Conduct iterative TEA to inform process targets and enhancements.

- **Major challenges:**
 - Low power biocomposite reactor design: cell adhesion and viability, extended performance.
 - Strain development: high-productivity (T, R, Y, as dictated by TEA), biogas tolerance.
 - Process Integration: optimization of biogas delivery, mass transfer, methane activation, and biosynthesis of MA.

- **Critical Success Factors:**
 - Develop a methanotrophic biocatalyst with muconic acid biosynthetic capacity.
 - Achieve enhanced mass transfer and process intensification via novel reactor deployment.
 - Demonstrate a bioconversion process integrated with real-time AD biogas production.
Biogas Characterization: CH\textsubscript{4} and H\textsubscript{2}S Evaluation

- We evaluated a series of substrates with wide-range H\textsubscript{2}S generation potential.
- Continuous AD configuration leads to substantial H\textsubscript{2}S accumulation.
 - Potential for methanotrophic toxicity.
H$_2$S Does Not Impact Growth…but Alters Metabolism

- Minimal growth defect under high-H$_2$S cultivation conditions.
- Comparative metabolomics indicated dramatic metabolic rearrangement.
 - Strain adaptation and engineering underway to mitigate potential exacerbation and flux alterations at scale.
Proof-of-Concept Muconic Acid Biosynthesis

- Successfully achieved production of MA from methane (annual milestone).
- First multi-gene pathway engineered in methanotrophic bacteria.
- Pathway optimization and fermentation scale-up underway.

Schematic overview of synthetic muconic acid pathway.
Techno-economic Analysis

- Preliminary analyses indicate **yield** remains a primary cost driver in the development of a viable biogas-to-fuels and chemicals processes.
 - Process intensification enhancements will specifically target CCE.
- kLa and volumetric productivity are interrelated and must be balanced to avoid CAPEX expenditures related to gas recycle and compression.

![MFSP and Production vs. Yield](chart.png)
Process Intensification Enhances kLa and Productivity

- > 10x organic acid titer enhancement in high-density biocomposite
- > 10x kLa enhancement in falling film reactor
- Biocomposites sustain methane uptake for >100 hours
- 100x less NO₃ than base media (0.01g/L)
- Increased CH₄ uptake rate with increased cell density
Process Intensification Enhances k_La and Productivity

- > 10x organic acid titer enhancement in high-density biocomposite
- > 10x k_La enhancement in falling film reactor
- Biocomposites sustain methane uptake for >100 hours
- 100x less NO$_3$ than base media (0.01g/L)
- Increased CH$_4$ uptake rate with increased cell density
Relevance

- H$_2$S-tolerant methanotroph opens the door for “feedstock agnostic” biogas valorization
- Novel reactor design enables process intensification for secreted products, with low water and power inputs, enhanced mass transfer and CCE.
- Tech transfer/marketability: represents proof-of-concept for an array of methane biocatalysis strategies.
- Applicable to an array of gaseous substrates.
- Relevant to EERE’s MYPP for developing cost-effective, integrated waste-to-energy processes for the production of bioproducts.
Future Work

• Future work will primarily target strain and reactor improvements for enhanced productivity and bioprocess integration.
 – Incorporation of strain modifications informed by metabolomics and FBA.
 • MA pathway optimization via fine-tuned overexpression.
 – Covalent cell immobilization on biocomposites and initiation of trials with top MA production strain.
 – Updated TEA models with Y2 productivity metrics.

• FY17 Go/No-Go: Demonstrate 0.1g/L/hr productivity and reactor viability >96 hrs.

• FY18 Targets & Beyond: Integrate reactor and MA biocatalyst with real-time AD production.
 – Identify new opportunities for this platform and integrate with AOP activities.
• Successful production of muconic acid from methane.
 • H₂S-tolerant strain capable of cultivation on an array of biogas streams.
• We have developed an integrated approach and bioprocess for production of fuel and chemical intermediates from biogas.
 • Novel reactor design substantially enhances process efficiency.
• Significant potential to impact rapidly emerging methane conversion industry.
• Widespread applicability to an array of gas fermentation technologies.
Acknowledgements

Calvin Henard
Holly Smith
Nancy Dowe
Phil Pienkos
Ling Tao
Jeff Linger
Mike Resch

John Fei (Xi'an Jiaotong University)
Marina Kalyuzhnaya (SDSU)
Ilya Aberkin (SDSU)
Michael Schuppenhauer (Farmatic, Inc)
Danny Alexander (Metabolon, Inc.)
Michael Flickinger (NCSU)
CJ Duran (NCSU)
Process Intensification: Microbial Biocomposites

- Dramatic productivity enhancements
 - Enhanced mass transfer; >10x improvements in gas uptake rate
 - Reactive for >6 months
 - Minimal media requirements; non-growth media
 - Applicable to an array of microbes, fuels, and co-products

<table>
<thead>
<tr>
<th>Microbe</th>
<th>Gas Consumed</th>
<th>Gas or Product Evolved</th>
<th>Enzyme System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluconobacter</td>
<td>O₂</td>
<td>L-sorbose (D → L sugar oxidation)</td>
<td>LSDH (membrane bound)</td>
</tr>
<tr>
<td>Clostridia</td>
<td>CO, H₂</td>
<td>EtOH, acetate</td>
<td>CODH</td>
</tr>
<tr>
<td>Rhospseudomonas</td>
<td>N₂</td>
<td>fixed nitrogen</td>
<td>nitrogenase</td>
</tr>
<tr>
<td></td>
<td>Ar (inert)</td>
<td>H₂</td>
<td>N₂ – limited nitrogenase</td>
</tr>
<tr>
<td>Synechococcus, Synechocystis, Anabaena</td>
<td>CO₂</td>
<td>O₂, carbohydrates, lipids</td>
<td>hydrogenase</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>CO₂</td>
<td>H₂</td>
<td>sulfur-limited hydrogenase</td>
</tr>
</tbody>
</table>

Courtesy of Flickinger, et al, 2015
Response to Reviewers’ Comment

• This project was not subjected to prior review.
Publications, Patents, Presentations, Awards, and Commercialization

• Publications:

• Book Chapters:

• Patents:
 – Organic Acid Synthesis from C1 Substrates

• Presentations:
 – SIMB 2014
 – SIMB 2015
 – Gordon Research Conference 2016
 – ASM 2016