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Goal Statement

• Current technologies: 
– low C-retention in 

fuel range 
– high H consumption.

• Experimental results allow 
– life-cycle analysis (LCA) and 
– techno-economic analysis (TEA) 
back fed to the experimentalists to refine selection of catalyst 
and process operations 

• ultimate objective is 
maximizing C efficiency at minimum H utilization. 
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• This project:
– effective fractionation, 

combined with 
– catalytic upgrading for

• C-C bond formation 
• Hydrodeoxygenation 

in liquid 
and vapor 

phases
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Quad Chart Overview

• October, 2015
• March, 2017
• 90 % Complete

Timeline

Budget

BarriersPartners
o OU 50 %
o INL 25 %
o U. Wisconsin 12.5 %
o U. Pittsburgh 12.5 %

FY 14-15 
Costs to 
6/30/15

FY 15-16 
Costs to 
6/30/16

FY 16-17 
Costs to 
12/31/16

Total Planned 
Funding (FY 17-
Project End 
Date

DOE 
Funded $1,051,765 $684,474 $338,364 $318,767

Project 
Cost Share
(Comp.)* $398,120 $232,487 $112,329 $6,332

Tt-F. Deconstruction of 
Biomass to Form Bio-Oil 
Intermediates

Tt-I. Catalytic Upgrading of 
Gaseous Intermediates to 
Fuels and Chemicals

Tt-J. Catalytic Upgrading of 
Bio-Oil Intermediates to 
Fuels and Chemicals

Tt-O. Separations Efficiency

Tt-S. Petroleum Refinery 
Integration of Bio-Oil 
Intermediates
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Approach (Technical)

• Thermal fractionation: 
– moderate T and t  most reactive parts 

 small oxygenates
– Higher temperatures and faster heating 

 mostly phenolic compounds
• Catalytic upgrading: Specific catalyst formulations to 

– maximize C retention in liquid phase and minimize catalyst deactivation
– C-C bond forming and HDO reactions

• Separation: Refining of the different fractions 
 supercritical extraction and selective adsorption for purer 
streams 

• LCA and TEA: Analysis LCA and TEA helps continuous 
improvement and feedback



Approach (Management)

• The outcome of this project will be a series of possible process 
strategies to produce stabilized liquid projects that could be 
inserted in a conventional oil refinery.

• The most important challenge is related to process economics 
• The current goal is to find thermal fractionation processes, 

catalysts and catalytic reactors, as well as separation processes 
that minimize the cost and environmental impacts, maximizing the 
liquid yield

• The senior personnel of the different parts of the project 
(thermal conversion, separations, catalysis, LCA, TEA) are 
responsible of planning, organizing, controlling resources, and 
procedures to accomplish the established goal
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HDT

Phenolics

Furfurals
and 
dehydrated 
sugars

Small 
OxygenatesLow Liquid 

Yield

Excessive 
H2

Consumption

J. Phys. Chem. Lett., 2, 2294–2295, 2011

Technical Accomplishments
Staged torrefaction/pyrolysis to decrease stream complexity



Sugar derived 
compounds: 

Furanics
Levoglucosan 

Light 
Oxygenates 
Acetic acid,

acetol, acetal
Water

Lignin 
derived 

Compounds: 
Phenolics

Ketonization Aromatization/
HDO

Aldol
Condensation HDO

Alkylation HDO

Hydrogenation

FUELS

Pham, T.N.; Shi, D.;Resasco, D.E. Appl. Catal B: Environmental.  2014, 145 ,10 

Multi-stage Pyrolysis + Catalytic Cascade

250-275°C

300-350°C

550-600°C

C-C BOND FORMATION FINAL UPGRADESTAGES

Char
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Activated carbon adsorptive trapping to improve
Fractionation efficiency 

Pyroprobe effluent passing through activated carbon bed shows 
large reduction in levoglucosan, methoxyphenols.

Efficient 
elimination 

of 
compounds 

that may 
deactivate 
catalyst in 

subsequent 
stages



Upgrade of selected thermal stage streams

C-C bond forming
(a) Ketonization/hydrogenation/alkylation (1st cycle)

Disadvantage  C loss and H2 consumption
(b) Direct acylation with acetic acid (2nd cycle)
(c) Aldol condensation of acetone/furfural (1st cycle)

Disadvantage  C loss and catalyst deactivation
(d) Formation of cyclopentanone + aldol condensation 

(2nd cycle)
HDO reactions

Strategies investigated to incorporate two of the most 
abundant species from thermal stage streams:  

acetic Acid / furfural / phenolics
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Mechanism of ketonization of acetic acid over HZSM5 

1. Surface acyl are formed by dehydration of acid on BrØnsted zeolite
2. Dehydration happens at lower temperature than ketonization
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Can we pick these surface acyl’s ?

Gumidyala, A., Sooknoi, T., & Crossley, S. (2016). Selective ketonization of acetic acid over HZSM-5: The importance of acyl 
species and the influence of water. Journal of Catalysis, 340, 76-84.



New route of acylation  acetic acid acylating agent

Substrate

+

Acylation

Acylating agent

Herron, J. A., Vann, T., Duong, N., Resasco, D. E., Crossley, S., Lobban, L. L., & Maravelias, C. 
T. (2016). A Systems-Level Roadmap for Biomass Thermal Fractionation and Catalytic 
Upgrading Strategies. Energy Technology.
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Comparing cresol, m-furan, furan and toluene acylation
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• Gumidyala, A.; Wang, B.; 
Crossley, S., Direct carbon-
carbon coupling of 
furanics with acetic acid 
over Brønsted zeolites. 
Science Advances 2016, 2
(9), e1601072.

Similar activation 
energy but varied 
rate with changing 

substrate



Dual bed reactor with real streams

+

Pd/C HZSM5

O O

AA : Furfural mole ratio = 1 : 0.8
Catalyst : HZSM5 (Si/Al =40)
Catalyst weight : 50 + 50 mg
Temperature : 250 °C
In Hydrogen

0%

20%

40%

60%

80%

100%

Conversion
AA

Conversion
Fu

Yield Furan Yield acetyl
furan

 Carbon loss in the form of CO and higher barrier for acylation of furan
 Can we avoid decarbonylation and promote hydrogenation? 13



Dual-bed reactor with real stream composition
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+

Pd/C HZSM5

O O

AA : Furfural mole ratio = 1 : 0.15
Catalyst : HZSM5 (Si/Al =40)
Catalyst weight : 50 + 50 mg
Temperature : 300 °C
In Hydrogen

Metal Zeolite

Traces of acylation and ketonization ? 

Main products = furan, methyl furan and traces of other products yet to be identified

Conversion@ 30min 
Furfural = 100%
Acetic acid = 6%

Furan 55
m-furan 32

Acylation and 
ketonization products
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Other products 9

Yields of products

Dual bed reactor with real streams



Conversion of furfural in the vapor phase

Gas phase. 5% Ru/TiO2 , 400°C, atmospheric
pressure, under H2. Feeding 0.1 mL/h of furfural

and 1800 mL/h of H2.
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Ru/TiO2 is very selective for methylfuran



Selectivity shifts to cyclopentanone with torrefaction vapors
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Water increases furfural conversion and cyclopentanone yield

Increasing H2O/FAL molar ratio
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Liquid Phase C-C bond forming strategies

Ketonization

AcetoneAcetic acid

Hydroxy Alkylation

m-cresol

Acylation
C9-C17 aromatics

Aldol Condensation

C10-C15 oxygenates

Hydroxy Akylation+

C10-C13 aromatics

Acylation+

C9 aromatics

HDO
Piancatelli*

Furfural cyclopentanone

C12-C24 aromatics

Hydroxy Akylation+* Hronec et al. 
Catal. Comm.,24, 100 (2012)



Aldol Condensation of Cyclopentanone

0.5 g cat
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Hydrophobized MgO-SiO2



Hydroxy-Alkylation of cyclopentanone and m-cresol

• Two Bronsted acid-catalyzed reactions
• Aldol Condensation : Monomer (1) + Dimer (2)
• HydroxyAlkylation: Monomer (3) + Dimer (4) + Dimer (5) + Trimer (6)

HAA
C12-C24 

oxygenates 

Catalysts: Amberlyst 36, zeolite beta, etc.

AC products
C10-C15 oxygenates



Step 1: C-C bond formation

m-cresol/CPO 2:1, 
CCPO = 3M  

Catalyst:  3 g Amberlyst 36
Conditions: 150oC, 12h, 400 psia N2
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• Partial removal of O
• Pre-stabilizing bio-oil
• Forming larger oxygenation 

via forming C-C bonds

Carbon balance = 96%
X



Step 2:  Hydrodeoxygenation and Ring Opening

Solvent: 
Undecane
Catalyst: 

0.5g 2%Pd/Al2O3
Reduction: 
150oC, 3h
Reaction 

Conditions: 
250oC, 12h, 
800 psia H2

 Carbon 
balance = 93%

C16
alkanes

C12 cyclic

C10
alkanes

C12
alkanes



Life Cycle Analysis: Comparing scenarios
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Life Cycle Analysis



Life Cycle Analysis:  Process Overview



Life Cycle Analysis:  GHG Emissions



Key trade-offs and cost drivers through detailed TEA

- Carbon yield improvement 
requires more complex 
processing, leading to higher 
capital costs

- Design of thermal decomposition 
conditions must be done in parallel 
with fraction upgrading system

Goal: maximize carbon 
yield (primary) and 
minimize H2

consumption 
(secondary)



Major Findings
- Acylation and Hydroxyalkylation increase 

fuel product yields without the C losses 
previously observed in the path ketonization 
/ alkylation  

- Similarly, furanic arrangement to cyclopentanone provides 
another way to maximize product yield via C-C bond forming 
reactions

- Feedstock cost, hydrogen cost, and capital cost appear to be the 
dominant cost drivers

- Multi-stage thermal + catalytic upgrading show better economic 
performance than the conventional “ fast pyrolysis + HDO”, 
achieving over 80% GHG reductions relative to petroleum diesel 
and the highest environmental performance of all the examined 
design cases, with promising EROI and GHG emissions profile

- The net improvements in fuel-grade product yields outweigh the 
costs of increased process complexity
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