

Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons:

Conversion of Lignocellulosic Feedstocks to Aromatic Fuels and High Value Chemicals

9 March, 2017

Technology Area Review: Thermochemical Conversion

PI: Randy Cortright PhD Presenter: Andrew Held

Virent, Inc

WBS: 2.3.1.406

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

Project Goal – Develop and demonstrate integration of Virent's lignocellulosic biomass Solvolysis technology with Virent's BioForming® process to generate aromatic-rich hydrocarbon products for use in either fuels or high value aromatic chemicals applications.

Biomass to Drop in Hydrocarbons

- Deconstruction of Biomass and Stabilization of the Intermediates using Virent proprietary catalysts and catalytically derived solvents.
- Product Synthesis and Upgrading using catalytic condensation to produce aromatic rich hydrocarbon products that can be used as either fuels or high-valued aromatic chemicals

Developing a Commercially Viable Bioenergy Technology

Demonstration of a thermochemical process to provide information relevant to scale-up and process integration.

Reduction in Greenhouse Gas Emissions

- Renewable feedstock Forest harvest residuals, corn stover, sugarcane bagasse, etc.
- Full utilization of biomass including lignin rather than a carbohydrate ONLY philosophy
- Cradle to grave analysis shows a large reduction in the environmental impact increasing the overall sustainability.

Relevance and Tangible Outcomes for the United States

- Promotes national security through decreased dependence on foreign oil
- Generates a sustainable future for petroleum derived products with renewable resources
- Stimulates economic growth through generating jobs and a bioenergy industry

Quad Chart Overview

Timeline

Project Start: October 2011

Project End: September 2015

Percent complete: 100%

Barriers

Tt-A: Feeding Dry Feedstock

 Tt-F: Deconstruction of Biomass to Form Bio-Oil Intermediates

 Tt-J: Catalytic Upgrading of Bio-Oil Intermediates to Fuels and Chemicals

 Tt-H: Intermediate Stabilization and Vapor Cleanup

Budget

	FY10 –FY12 Costs	FY13 Costs	FY14 Costs	FY15-End Costs
DOE Funded	\$610,834	\$1,043,133	\$1,001,880	\$1,244,965
Virent Cost Share	\$500,983	\$855,544	\$821,710	\$1,021,083

Partners

- Iowa State University
 - Feedstock Processing

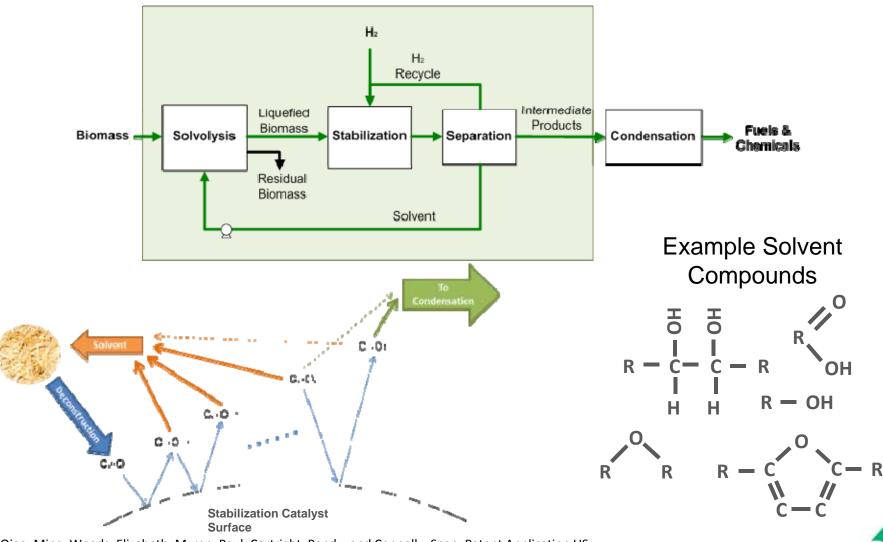
1 - Project Overview

- Project Goal –Develop and demonstrate integration of Virent's lignocellulosic biomass Solvolysis technology with Virent's BioForming® process to generate aromatic-rich hydrocarbon products for use in either fuels or high value aromatic chemicals applications
 - Demonstrate with multiple feedstocks (Residual Wood, Corn Stover, Bagasse)
 - Maximize carbon yields from biomass to desired products (aromatic-rich reformate)
 - Modifications of Virent's Catalytic Oxygenates to Aromatic (COTA)
 Process to maximize the carbon yields and product quality in the final product.
 - Collect pilot plant data to confirm scale-up viability, economics, and LCA of integrated process.
 - Demonstrate operability of the fully integrated lab-scale biomass to aromatics process via a 2000 hr lifetime run.

2-Approach Management

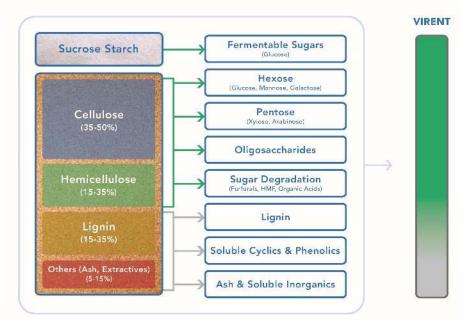
Project Management

- Project Management Plan and Project Work Plan
- Weekly team meetings
- Monthly Update calls with the DOE
- Quarterly/Final Reporting
 - Technical, Milestones, Financial
- Milestone reports
- Internal Stage Gate prior to Pilot Plant Build
- Peer Reviews (2013, 2015)


2-Approach Management

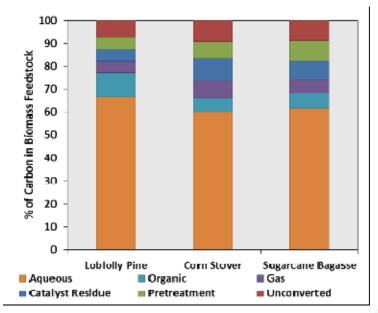
Milestones and Deliverables

Task Milestone Description		Deliverables		
Fundamental R&D	Solubilization of sugar cane bagasse, corn stover, and wood residuals	Achieve 90% conversion for each feed		
Fundamental R&D	Complete safety upgrades for aromatics generation	Identified and installed necessary laboratory safety upgrades to allow generation of higher concentrations of benzene		
Fundamental R&D	Improve selectivity to aromatics with model feeds within the COTA process	Achieve 50% improvement over the baseline in selectivity to aromatics using model feed		
Fundamental R&D	Improve COTA selectivity to aromatics with cellulosic feedstocks	Demonstrated 50% improvement in selectivity to aromatics using cellulosic feed with an expected catalyst lifetime of at least 3 mos.		
Process Development	Down select of process configuration and feedstock	Down select to a single feedstock with most promising deconstruction path to Aromatics for use in years 2 and 3		
Process Development	Improve Solubilization/HDO Process	Achieve 80% yield of volatile oxygenates from carbohydrate fraction of biomass and 95% biomass conversion		
Project Management	Hold a review to assess project progress and determine scope and funding revisions if necessary	Go-No-Go decision with report detailing supporting information		
Process Development	Complete Solubilization/HDO Pilot Plant Upgrades	Commission upgraded biomass deconstruction pilot plant using biomass feed to produce hydrolysate		
Process Development	2000 hour Demonstration Run	2000 hour-run with theoretical catalyst lifetime of at least 1 year		
TEA/LCA	Techno-economic and Life Cycle Analysis	Updated process simulation, cost models, and life cycle models incorporating technical achievements.		
Project Management	Project Management & Reporting	Manage communication, manage advisor committee and reporting throughout duration of the project.		


2 – Approach (Technical) Overall Technical Approach

-Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; and Connolly, Sean; Patent Application US 13/339720 Publication No. 20120318258 Solvolysis of Biomass to Produce Aqueous and Organic Products

2 – Approach (Technical) Critical Success Factors



Full Biomass Utilization

- -Effectively convert the biomass carbon (C_5 & C_6 sugars as well as lignin)
- -BioForming® technology can handle a broad range of oxygenates
- -Primary concern is inorganic ash affecting catalyst lifetime and stability

Feedstock Flexibility

- -Each biomass species has distinct differences in their carbohydrate and lignin profiles
- -Solvolysis has the ability to solubilize each portion of the biomass under moderate conditions

Similar carbon removal from biomass for forward processing (aqueous and organic) from three different feedstocks

Slide 8

2 – Approach (Technical) Summary

Overall Technical Approach

- This project utilizes Virent's Solvolysis and BioForming® technologies to deconstruct lignocellulosic biomass into soluble intermediates for catalytic conversion to an aromatic rich liquid fuels.
- Feedstocks Loblolly Pine, Corn Stover, Sugarcane Bagasse
- Products Gasoline Range Hydrocarbons with a focus on Aromatic Chemicals

Critical Success Factors

- Feedstock Supply Chain Economic collection and delivery of lignocellulosic biomass at a commercial scale
- Biomass Pretreatment Reduction of inorganic species known to be catalyst poisons
- Biomass Deconstruction Total biomass utilization, including lignin, maximizing carbon yields suitable for catalytic upgrading
- Catalyst Lifetimes Demonstrate stability and lifetimes utilizing a lignocellulosic feedstock
- Economics Improve capital and operating cost of biomass to liquid fuel process, reducing the overall product costs

Potential Challenges

- Feedstock Selection and/or advance pretreatment strategies for reduction of inorganic species without sacrificing convertible carbon
- Improve yields of liquid fuel through utilization of lignin in addition to carbohydrates, catalyst development and process optimization
- Demonstrate scalability of biomass digestion and full system integration with BioForming[®] catalytic technologies.
- Feedstock flexibility

3 – Technical Accomplishments Milestones

Biomass Solubilization

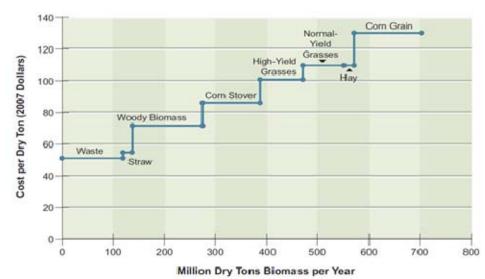
- √ Achieve >90% biomass solubilization
- √ Achieve >80% yield of oxygenates from carbohydrate fraction with 95% biomass solubilization
- Build and commission a continuous deconstruction unit maintaining yield and conversion of batch systems

Upgrading Biomass Intermediates to Aromatic Fuels and Chemicals

- √ Identify and implement safety upgrades for increased aromatics generation
- √ Achieve 50% improvement in selectivity to aromatics using model feed
- √ Demonstrate 50% improved selectivity to aromatics using cellulosic feed
- √ Fully characterize and validate a catalyst lifetime of at least 3 months using cellulosic feed

Project Directives and Process Development

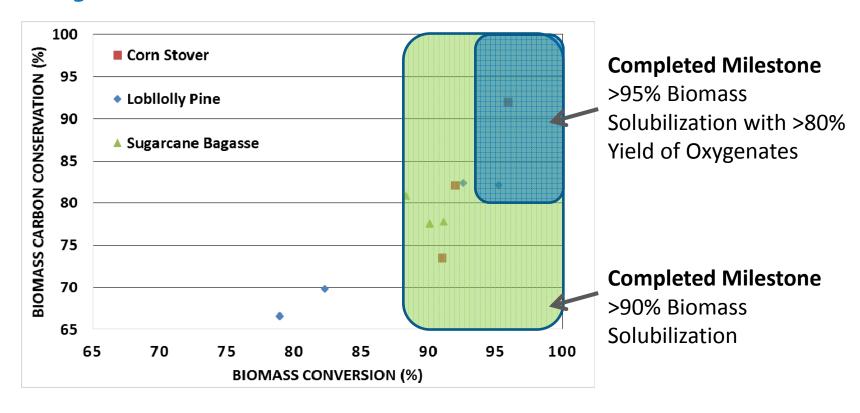
- √ Downselect to a single feedstock with most promising deconstruction path to Aromatics
- √ Identify optimal configuration and operating conditions for maximizing aromatics production
- √ Achieve a theoretical Solvolysis catalyst lifetime of at least 1 year through accelerated testing
- $\sqrt{2000}$ hr run with theoretical catalyst lifetime of 1 yr
- √ Develop TEA model for deconstruction process



3 – Technical Accomplishments Feedstock Downselect Milestone

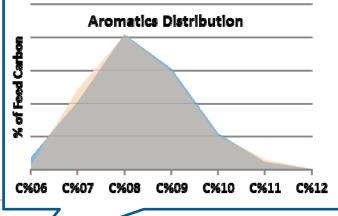
Woody Biomass Advantages

- -CHNO Analysis & Inorganic Ash Concentration
- -Biomass effect on product composition
- -Feedstock Cost
- -Feedstock Supply Chain


Variable (%wt)/Feedstock	Loblolly Pine	Corn Stover	Sugarcane Bagasse
Moisture	7.97	10.25	5.8
Ash	0.7	4.25	10.03
Carbon	51.1	46.44	45.77
Hydrogen	5.94	5.59	5.47
Oxygen	42.22	43.33	38.7
Nitrogen	<0.5	<0.5	<0.5
Sulfur	< 0.05	0.065	< 0.05
Chloride	0.0361	0.315	0.0266

Supply costs of various biomass feedstocks Source: Liquid Transportation Fuels from Coal and Biomass (National Academies of Sciences and Engineering). Dry tons are in short tons.

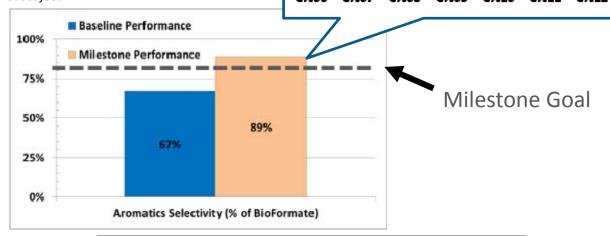
3 – Technical Accomplishments Solvolysis Conversion VS Conservation

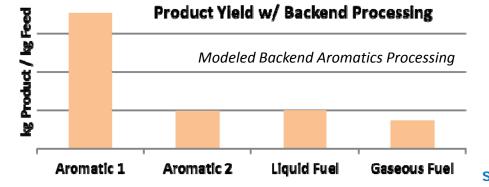

Biomass Conversion – weight % of liquefied biomass

Biomass Carbon Conservation – weight % of carbon retained in the liquid phase for condensation to fuels and chemicals (Losses to the gas phase and char formation)

3 - Technical Accomplishments

Acid Condensation Selectivity Improvement Milestone

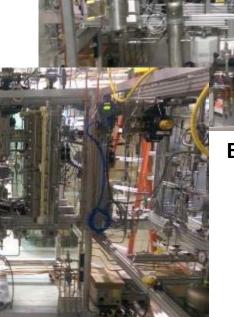

Acid Condensation Feed	BioFormate Yield (% of Feed Carbon)	Aromatics Yield (% of Feed Carbon)	Aromatics Selectivity (% of BioFormate)	Milestone Goal of Aromatics Selectivity (% of Bioformate)
Model Feed	70%	48%	68%	84%
Solvolysis Products	69%	46%	67%	84%



Model feeds displayed similar performance to solvolysis product feed

Goals:

- 50% Improvement in Aromatics Selectivity
- Characterization of Catalyst following completion of work
- Milestones Completed 10/30/2014



3 – Technical Accomplishments

Design, Build & Commissioning a Fully Continuous Deconstruction System

Built Plant Layout

Zoomed In View

3 – Technical Accomplishments Demonstration Unit Results

Unit is Fully Operational

 Allowed for Comparison of Solvolysis at Various Scales (g/day to kg/day of biomass)

Generating Data for TEA Model

- Validated model with data
- Evaluated commercial costs (equipment, heat loads, etc.)
- Utilized model sensitivity analysis to identify areas to focus research efforts

Expected Observed

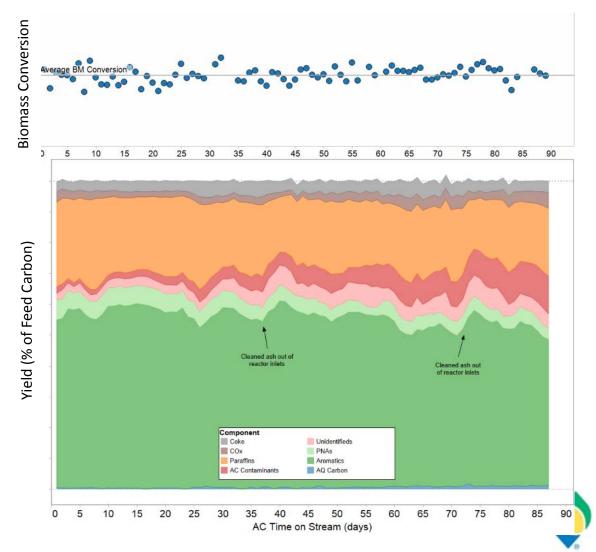
Time (Hours)


Extraction Profiles

Solvolysis Temperature Profile Solvolysis I emperature

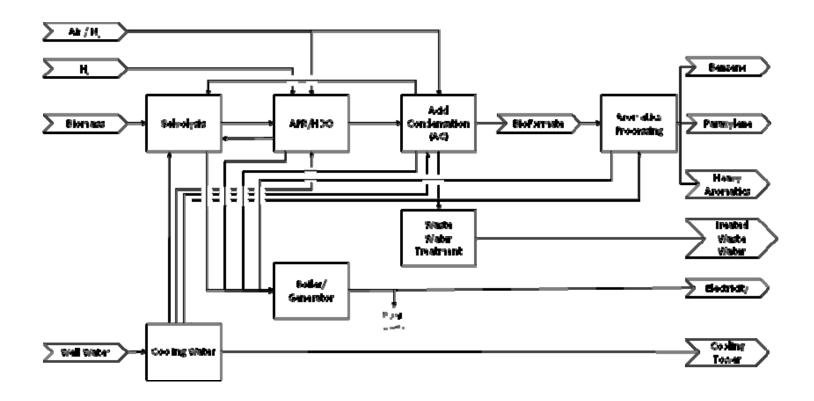
Optimize System Conditions

Identified optimal configuration and conditions for maximum product yields


3 – Technical Accomplishments Demonstration Unit Stability Run

Operated on-stream >2,000 hours with integrated process

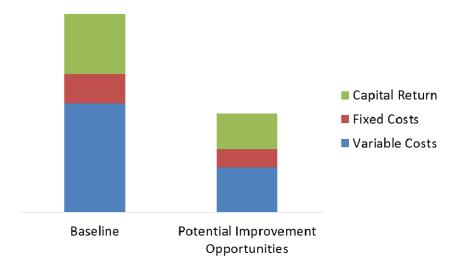
- Stable system operation
- Total system uptime >92%
- Biomass deconstruction and HDO section required shutdown to remove carbon buildup in tubing
- Acid condensation (COTA) shutdown required to remove ash from reactor inlet



Clean preheater Ash build-up

3-Technical Accomplishments Engineering, TEA, LCA

Integrated Demonstration Unit data basis for Aspen Plus Design Basis for Equipment sizing, capital and operating cost estimates and life cycle analysis.



3-Technical Accomplishments TEA & LCA Results

TEA

- 2000 Metric Tons/Day loblolly pine
- Integrated laboratory data
- Aspen process model
- Sensitivities
 - Overall Process Yield
 - Capex
 - Catalyst Performance

LCA

- 2015 GREET.NET
- Aspen process model
- Baseline case of >90% reduction versus petroleum baseline
- Sensitivities
 - Overall Process Yield
 - Electricity Grid Mix
 - Hydrogen Source

4 - Relevance

Contributes to meeting the platform goals and objectives of the BETO Multi-Year Program Plan by:

- Developing feedstock specifications and processing systems that accommodate feedstock variability and are optimized for convertibility.
- Developing technologies for converting biomass into bio-oil or syngas intermediates for subsequent upgrading into fuels and chemicals.
- Validating the sustainability and technical improvements of the integrated conversion technologies.
- Develop, refine and utilize life-cycle and process engineering/TEAs for priory and alternative thermochemical conversion routes.

Applications of the expected outputs in the emerging bioenergy industry

- Results from this project provide technical viability of combining a thermochemical conversion technology frontend with a chemical (catalytic) conversion technology to generate "direct replacement" hydrocarbons from a lignocellulosic feedstock.
- Process is showing it can utilize a wide range of feedstock components and is feedstock flexible.
- Process is showing its ability to scale the technology and progression along the TRL path.

5 - Future Work

Final Project Close-Out

Summary

1. Overview

- Converted lignocellulosic feedstocks to fuels and high value aromatic chemicals
- Utilized unique solvents created by the stabilization process to liquefy lignocellulosic biomass and integrate with Virent's BioForming® Catalytic Upgrading

2. Approach

Progressed technology and demonstrate scalability of a fully continuous process

3. Technical Results

- >95% liquefaction possible
- >80% conservation of carbon intermediates for condensation to fuels and chemicals
- Condensation produces an aromatic rich hydrocarbon product

4. Relevance

- Demonstrated technical and economic viability of process in 2000 hour demonstration run
- Identified areas for potential improvement opportunities

5. Future Work

Final Reporting

Additional Slides

Responses to Previous Reviewers' Comments

Publications, Patents, Presentations, Awards, and Commercialization

- Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; and Connolly, Sean; Patent Application PCT/US2013/0318258 Solvolysis of Biomass to Produce Aqueous and Organic Products.
- Qiao, Ming; Woods, Elizabeth; Myren, Paul; and Cortright, Randy;
 Patent Application PCT/US2013/0019859 Solvolysis of Biomass and Stabilization of Biomass Hydrolysate.

