U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase

March 8, 2017

Thermochem Conversion Review

<u>PI</u>: Abhijeet P. Borole, Ph.D.

Oak Ridge National Laboratory

<u>Co:PI's & Collaborators</u>: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL

Industrial Partners: FuelCellEtc., Pall coporation, OmniTech international, Sainergy Tech, Inc.

ORNL is managed by UT-Battelle for the US Department of Energy

Quad Chart Overview

Timeline

- FOA award CHASE project
- Start: 10/1/2013
- End: 6/30/2017
- 92% complete

Budget

Barriers

- Barriers addressed
 - Ct-M. Hydrogen Production
 - Ct-L. Aqueous Phase Utilization and Wastewater Treatment
 - Ct-J. Process Integration inhibitors
- Enabling Technologies
 - Novel Technologies, separations

Partners

- Partners (FY15-16)
 - GIT: Georgia Institute of 0 Technology (36%)
 - University of Tennessee, 0 Knoxville (34%)
 - FuelCellEtc. Inc. (< 1%) 0
 - Pall Corporation (3%) 0
 - **OmniTech International (1%)** 0

	Costs FY 12 –FY 14	Costs	Costs	Funding (FY 17-Project End Date
DOE Funded	448,046	\$751,691	\$603,502	\$331,760
Project Cost Share (Comp.)*	174,426 (28%) Partners: GIT UTK FCE Pall Omni	182,645 (20%) 	165,025 (21%) 	\$15,554 Overall (20.1%)

Objectives

- Reforming of aqueous phase organics to hydrogen via microbial electrolysis cell (MEC) technology.
- Develop energyefficient separations to support MEC.
- Demonstrate improvement in hydrogen efficiency.
- Perform life-cycle analysis.

CAK RIDGE

Hydrocarbon fuels

2-Approach-Management

2 – Approach (Technical)

- Produce hydrogen from bio-oil aqueous phase organics using MEC
- Investigate separation methods to generate feed for MEC and downstream separations to enable water/biocatalyst recycle
- Critical success factors
 - 1. Developing biocatalysts capable of utilizing all components of bio-oil aqueous phase
 - 2. Productivity of H₂
 - 3. Sufficient recovery of H₂ to upgrade bio-oil
- Challenges
 - Managing toxicity of bio-oil substrates (phenol, benzenediol, furans) and increasing their conversion along with complete utilization of acidic and polar compounds.
 - Improving proton transfer for hydrogen generation
 - Maintaining product specificity at higher scale (prevent CH₄)
 - Minimizing bioelectrochemical losses and achieving high conversion efficiency
 - Developing a continuous process

Milestones achieved:

Converted 99%+ furanic compounds with 77% recovery of hydrogen (03/16)

Developed 130 mL cell and achieved 60% H₂ production recovery (12/16)

Metrics:

- a) H₂ production rate >15 L/Lday
- b) Coulombic efficiency > 60%

3.0 – Technical Accomplishments/ Progress/Results

• **Objective 1.** Develop a reforming process for efficient conversion of aqueous phase organics to hydrogen via microbial electrolysis.

• Progress:

- Increased hydrogen productivity from 2.0 to 11.7 L-H₂/L of reactor per day for BOAP
- Maximum productivity using acetic acid as sole substrate = 26 L-H₂/L-day.
- Delineated mechanisms of conversion of lignin-derived phenolic intermediates to H₂
- Completed speciation of complex electroactive community (fermentative vs. exoelectrogenic vs. methanogenic)
- Developed advanced separation methods (electro-separations, membrane separations)

Milestones completed:

- 1. 90% conversion of carboxylic acids (06/2015)
- 2. 16S rRNA electroactive community (09/2015)
- 3. Demonstrate TAN removal in MEC (12/2015)
- 4. 50% conversion of furanic compounds at > 40% coulombic efficiency. (03/2016)
- 5. Separation of cellular biomass from MEC effluent using membrane system (09/2016)
- Go/No-Go criteria met:
 - 1. 90% conversion of carboxylic acids (09/2015)
 - 2. Achieve 60% H₂ prod. efficiency (12/2016)

- Most important accomplishment:
 - Achieve 60% hydrogen production efficiency from switchgrass BOAP in 100 mL MEC (12/2016)

Goal Statement

 Carbon, Hydrogen and Separations Efficiency (CHASE) Project.

<u>Technical Area:</u> Hydrogen Efficiency, subtopic: *Reforming hydrogen from aqueous streams in biomass liquefaction*.

- Goals:
 - Produce hydrogen and improve its recovery from biomass-derived bio-oil aqueous phase to reduce loss of carbon and improve efficiency, while reducing lifecycle greenhouse gas emissions.
 - Investigate separation processes to enable the hydrogen production process.
- Outcome:
 - Demonstrated hydrogen productivity at lab-scale achieving levels required for commercial feasibility, and raised the TRL from 2 to 4.

3.a – Overall Technical Accomplishments

3.b – Technical Achievements: Bio-oil production

- Feedstock: switchgrass
- Pyrolysis temperature: 500°C, 550°C
- Bio-oil: combined by three condensers
- Batch 3 & 4, 2015-16, 10 kg bio-oil generated
- Generated aqueous phase via water addition to bio-oil (4:1)
- Investigated stability of both fractions

Completion of Milestones:

Production of switchgrass bio-oil, characterization and stability analysis.

Pilot auger pyrolysis reactor at UTK Center for Renewable Carbon Products from switchgrass intermediate pyrolysis

		Bio-			
Bio-oil	Bio-oil	char	Non-		
produc-	yield	yield	condensable		
tion	(wt%)	(wt%)	gas yield (wt%)		
3 rd batch	51	18	31		
4 th batch	52	20	28		

Philip Ye, P. Kim, Shoujie Ren, N. Labbe

9

3.c - Microbial Electrolysis

- Concept:
 - Extract chemical energy as electrons at anode via biocatalysis and generate hydroger at cathode via electrocatalysis
 - Conversion of biooil aqueous phase (boap) organics to hydrogen
 - Anode: Production of electrons, protons and CO_2
 - Cathode: Proton reduction to hydrogen at applied potential of 0.3-1V.
 - Requires *electroactive biofilms* tolerant to inhibitory and toxic molecules in bio-oil aqueous phase (furfural, hydroxymethylfurfural, phenolics, etc.)
- Pyrolysis derived aqueous phase utilization
 - Minimize loss of carbon/energy, reduce bio-c instability and corrosivity **Pathway: Bio-oil Aqueous Phase (boap)**

Biotechnol for Biofuels. 2009, 2, 1, 7., Borole, A. P., et.al., Environ Sci Technol. 2013, 47, 642., Borole, A. P., et.al., Energy Environ. Sci. 2012, 4: 4813-4834, Borole, A. P., et.al. US Patent 7,695,834, UT-Battelle, USA, 2010., Borole, A. P. US Patent 8,192,854 B2 UT-Battelle, USA, 2012, Borole, A.P.

Enterococcaceae Rhodocyclaceae Geobacteraceae Lachnospiracea Clostridiaceae Porphyromonadaceae Sphingobacteriaceae Leuconostocacea Synergistaceae Flavobacteriaceae

Other

Biological nanowires \rightarrow electrons + protons (anode) \rightarrow H₂ (cathode)

3.d – MEC performance

OAK RIDGE

3.e. Feedstock Specificity for MEC

- Investigated effect of feedstock and pyrolysis process conditions
- Pine wood catalytic pyrolysis aqueous phase as substrate in MEC (courtesy of PNNL/VTT)

Successful demonstration of MEC operation with pine-derived catalytic pyrolysis aqueous phase (Met Critical Success Factor 1).

3.f – Technical Achievements Conversion of Bio-oil Aqueous Phase

including acetic acid and phenolic acids.

3.g – Technical Achievements - Understanding Mechanism of Furanic and Phenolic Compounds Conversion

Individual Model Compounds Used as Bioanode Substrate

• Electron Balance

	Parameter _		Batch run				
	Parameter	SA	VA	HBA	FF	HMF	Acetate
	Substrate input (mmol) Experimental condition	0.2	0.2	0.2	0.2	0.2	0.48
	Substrate electron equivalence (e ⁻ mmol/mmol) <i>Chemical property</i>	36	32	28	20	24	8
	Total e ⁻ input (e ⁻ mmol) Substrate input × eeq	7.2	6.4	5.6	4.0	4.8	3.8
	e ⁻ recovered as current (e ⁻ mmol) <i>Measured</i>	3.6	0.8	0.4	2.9	2.8	3.2
	Anode efficiency (%) substrate → current (COD removal × Coulombic efficiency)	50	12	9 (72	56	84
	e ⁻ recovered as cathodic H ₂ (e ⁻ mmol) <i>Measured</i>	2.9	0.6	0	2.4	1.9	2.5
	Cathode efficiency (%) current $\rightarrow H_2$	81	76	NA	83	69	78
14	Presentation_name Xiaofei Zeng, S	SG. F	Pavlo	stathi	S	C	Georgia Tech

Completed Milestone: Demonstrate the anodic conversion of furanic compounds

3.i – Technical Achievements Bio-oil separations

- Developed an understanding of molecular contribution to TAN
- Conducted mass balance on TAN (acidic groups) in BOAP and employed the knowledge to oil-water separation
- Relationship of pH/pKa-TAN and mixing phenomenon important to extract TAN from bio-oil.

Molar concentration of solutions (M)

Results show potential of the methodology to be applied for understanding separation of acidic compounds from bio-oil and subsequent increase in TAN during storage.

10

National Laboratory

3.j – Technical Achievements Membrane separation of MEC effluent for water and biocatalyst recycle

- Develop a model system (*Geobacter sulfurreducens*) for studying separations of MEC effluent
- Identified conditions for effluent clean-up
- Evaluated cellular biomass effluent with polymer and ceramic membranes
- Establish long term flux stability over time

- Demonstrated effective fouled membrane cleaning

MEC effluent particle size preliminary analysis Particle size range: 0.1 μm to ~1000 μm 10 % of particles up to 2 μm 50th percentile was ~140 μm Filtration Performance Membrane flux: 40 -60 L/hr-m². Polymeric membranes better than ceramic zirconia, PVDF better than PAN Andrew Drake, Ramesh Bhave, ORNL

Completed Milestone: Develop membrane separation of MEC effluent

National Laboratory

Performance and efficiency metrics for MEC development

	Targets for commercial consideration	Start of Project (Oct 2013)	March 2015	March 2	2017		
Scale			16 mL	16 mL	130 mL		
Hydrogen production rate, L H ₂ /L-reactor-day	> 15 FCTO MEC using sugars: 0.36 L/L-day	1.5	2.0	11.7 ± 0.2 (BOAP) 27 (Acetic acid)			
Anode current density, A/m ²	20	1-2	5	11.5 (BOAP) 27 (Acetic Acid)			
Anode CE	>90%	< 40% [7]	54%	Up to 79% [#]	62%		
% COD removal	> 80%	NA		74.2%	74%		
Applied voltage	< 0.6 V	1.0 V [14]	0.9 V	0.8 V	0.75V		
Cathode CE	>90% at 0.6V or less	80% with 1 V (acetic acid)	80-96%	Up to 100% ^{\$}	85%		
Electrical Efficiency	>150%	100%+ with acetic acid		162%	149%		
Resistance	< 80 m Ω m ²	36 – 189 mΩ m² (non- BOAP)	NA (BOAP)	105 mΩ m² (BOAP)			
Achieved hydrogen productivity goals required to show commercial feasibility! (Met 2 nd Critical Success Factor) Elevated technology from TRL 2 to TRL 4							

18

3.m Techno-Economic Analysis (TEA)

- Biorefinery MEC integration
- Utilization of carbonyl compounds in BOAP to generate hydrogen
- MEC capital costs \$ 2000/m³

• TEA model to assess MEC feasibility

Sensitivity Analysis H_2 productivity = 20 L/L-dayCapital costs :\$2000 to \$4000: \$2.5 to \$3.25/kgFeedstock costs:(0 to \$85/ton):\$2.5 to 3.9/kgConversion efficiency:45-57%:\$3.9 to \$3.6/kg

Target performance for application feasibility

3.n Life-Cycle Analysis (LCA)

- Comparison of Steam Methane Reforming (SMR) to MEC process
- Developed PFDs for Hydrogen generation in biorefinery using natural gas + pyrolysis gas vs. BOAP MEC + pyrolysis gas reformer
- Extracted mass balance for SMR from PNNL-25053. Conducted energy balance to complete dataset. Similarly, mass and energy balance for MEC process under way
- Determined baseline LCA for SMR to compare with MEC using SimaPro.

Publications/Patents

- Report: LCA analysis of MEC in comparison to steam reforming for hydrogen production
- Manuscript: Life cycle analysis of hydrogen production from biomass via microbial electrolysis (planned)
- TEA analysis of MEC for hydrogen production in biorefinery (planned)
- + one more comparison of MEC with steam reforming.

Separation of MEC effluent using membranes for water recycle, in preparation

13 Publications + one patent to date + 5 manuscripts in review

Efficiency: < \$ 150k/pub.

and Characterization LCA Carbon, Hydrogen & **Separations Efficiency** CHASE Conversion of boap in MEC Conversion of furanic and phenolic compounds Conversion of phenolic and furanic compounds - ES&T, 2015 Effect of continuous operation in MECs - \geq RSC Advances, 2016 Understand inhibition by parent \geq compounds and intermediates -- ES&T, 2016 Identification of intermediates from furans >and phenolic compounds - Water Res., 2017 + modeling manuscript

Bio-oil Production

2

- Switchgrass bio-oil production & characterization J. Anal. & Applied Pyrolysis
- Separation of bio-oil components, J. Anal. & Applied Pyrolysis
- > Third manuscript on stability in preparation
 - > Neutralization of pH to separate bio-oil, Energy & **Fuels**
 - TAN analysis of BOAP, Fuel \triangleright
 - \geq MEC Technology status (ECS Interface), MEC impact analysis: Sustainability.
 - Book chapter on biorefinery MXCs
 - BOAP conversion Bior. Technol., \geq 2015
 - \geq Effect of flow, RT, on MEC performance - Biochem. Eng. J.
 - Comparison of batch and continuous \geq bioanode operation in MFCs -Biochem. Eng. J.
 - Proton transfer in MECs - \geq Sustainable Energy & Fuels
 - Biocomplexity of anode biofilms in review
 - Effect of redox potential in \geq preparation...
 - + 3 more.... \geq
 - Provisional Patent for Biorefinery MECs – applied June 2016
 - Electroactive biofilm enrichment process,
 - WTE conversion via biorefinery MEC
 - integration

4.a Relevance

4.b Relevance Integrating the biomass resource... into the bio-economy via H_2 carrier \rightarrow has multiple benefits...

5.a Future Collaborations

- PNNL (MEC conversion of VTT catalytic pyrolysis aqueous phase and product characterization, algal HTL water)
- NREL (TEA spreadsheet pyrolysis process)
- Iowa State University
 - Aqueous phase from ISU fractionator (Centralized Biorefining)
 - TEA analysis of MEC-SF integration process
- USDA, Peoria
 - Conversion of tail-gas recycle pyrolysis aqueous phase
 - Potential integration of farm-scale pyrolyzer and farm-scale MEC for distributed H₂, bio-oil and bio-char.
- Industry
 - Collaboration on Integrated Biorefinery Optimization
 - Integration of MEC into thermochemical biorefinery

5.b – Future Work

- Scale-up of MEC to 1 L
- Test multi-MEC stack for distributed farm production of H₂ and a stable biooil
- Optimize biocatalyst growth for industrial application
- Complete LCA analysis of MEC process
- Complete separation process analysis for optimal feedstock utilization (for downstream MEC and hydrotreating unit ops)
- Complete publication of manuscripts as follows:
 - Separation of oil-water using centrifugal separators and capacitive deionization (2)
 - Membrane separation of MEC effluent
 - Improvements in MEC potential efficiency, Effect of MEC size on performance, Composition-function relationships, omics analysis (4)
 - TEA/LCA analysis (2)
- Identify opportunities for scale-up and integration of MECs into biorefineries

Summary

- <u>Overview</u>: Improved hydrogen efficiency via a hybrid biocatalytic-electrocatalytic process (MEC), using a biomass-derived stream, while addressing carbon and separations efficiency.
- Holistic <u>approach</u> covering bio-oil production, characterization, conversion of boap to H₂, process recycle and TEA/LCA analysis.
- <u>Accomplish</u>ed development of an electroactive biocatalyst and MEC to convert boap to H₂ at efficiency > 60%. Demonstrated effective conversion of problematic carbonyl compounds in MEC.
- Addressed C, H and separations efficiency and barriers Ct-M, Ct-L, Ct-J <u>relevant</u> to BETO.
- <u>Future work</u>: Scale the process to modular repeat unit (1-5L) while maintaining productivity at 15 L/L-day and > 60% efficiency.

Vational Laboratory

3.c - Hydrogen Production: Comparison with Existing Technologies

- Bio-oil steam reforming using Pt-Re or metal catalysts:
 - Low H₂ yield (0.1 to 40 %) vs. 64-91% for MEC.
 - High coking vs. no coking in MEC
 - Expensive catalyst vs. regenerable biocatalyst for MEC.
- Bioconversion:

	Process scheme	Theoretical yield	Observed yield	Free energy change (for H ₂ -producing step)	Overall observed energy yield	Comments
1	Hypothetical H ₂ production	12				
2	Hexose to ethanol to H ₂ via autothermal reforming	10	9.5	–265 ^ª kJ/mole	~83%	Prohibitive catalyst (Rh) cost ¹⁰
3	Dark-light fermentation: Glucose \rightarrow acetate \rightarrow H ₂	8	7.1	+164 kJ/mole	59.2%	Limited by light penetra- tion and cost ³⁹
4	Methanogenesis-steam reforming	8	6.0	+261 kJ/mole	50.5%	Mature technology components ^{9,40}
5	MEC	12	8.2	+104.6 kJ/mol	64%	Nascent technology 3,30

^a Processes 3–5 require energy input for the hydrogen-producing step, but this step is energy yielding in process 2. While the hydrogen producing reaction is energy-yielding, energy input is required for production of ethanol from hexose.

Microbial electrolysis is a high efficiency, high yield, practical alternative available for hydrogen production.

Borole, A. P. (2011). <u>Biofuels, Bioproducts & Biorefining</u> "Improving energy efficiency and enabling water recycle in biorefineries using bioelectrochemical cells." <u>5(1): 28-36.</u>

K RIDGE

nal Laboratory

4 - Relevance

- Contributions to BETO MYPP goals:
 - Developed strategy for improving carbon and hydrogen conversion efficiency and demonstrated feasibility of conversion using switchgrass as feedstock (Barriers Tt-M, Tt-N)
 - Initiated investigations into separations technology for extracting acidic compounds from boap and for water recycle (Tt-O)
 - Address 'Balance of Plant' issues: wastewater treatment, minimizing organics in aqueous phase, more efficient carbon and hydrogen usage process recycle
 - Address knowledge gaps in chemical processes via bio-oil characterization, understanding and driving separation and conversion of key problem (acidic/polar) compounds (Tt-H, Tt-L).
- Patent applications / Invention disclosures
 - Hydrogen production from pyrolysis-derived aqueous phase (June 2016).
 - Separation of acidic molecules from biooil (in preparation)

4 – Relevance...

- Application in emerging bioenergy industry
 - Establish MEC as core technology for hydrogen production in thermochemical biooil upgrading
 - Potential application for producing hydrogen from fermentation effluent and lipid-extracted algae
- Support of strategic goals (Section 2.2.2.1 of mypp)
 - Use of extracted electrons for increasing efficiency of production of biofuels (butanol) via bioelectrochemical systems (p. 2-71, 2-79 –'yet-to-be-discovered technologies')
 - Production of biochemicals (1,3-propanediol; 1,4-butanediol)
- Sustainability analysis and communication
 - Consumptive water use, wastewater treatment.

3.j – Technical Achievements **Pathways for Conversion of Furanic and Phenolic Compounds in Bioanode**

Tech

3.c. Electroactive Biofilm Development via Targeted Evolution

- Other
- Enterococcaceae
- Rhodocyclaceae
- Geobacteraceae
- Lachnospiracea
- Clostridiaceae
- Porphyromonadaceae
- Sphingobacteriaceae
- Leuconostocaceae
- Synergistaceae
- Flavobacteriaceae

- Microbial consortium capable of converting all class of compounds in BOAP
- Negligible presence of methanogens/ archaea
- Reproducibility of consortia in duplicate MECs
- No external mediators and potentially mediator-free operation

7-10% Geobacter

Capable of tolerating furanic and phenolic compounds

3.f – Technical Achievements Conversion of Pine Wood Aqueous Phase

GIT Conclusions and Contribution

• Conversion of Furanic and Phenolic Compounds

- Promising Coulombic efficiency and H₂ yield by all five compounds utilized
- Two-step biotransformation: fermentation (independent), exoelectrogenesis (dependent)
- Furanic compounds more productive substrates than phenolic compounds

→ Quantitative information on the extent of biotransformation and contribution of individual furanic and phenolic compounds to MEC H_2 production

• Biotransformation Pathways

- Phloroglucinol vs. benzoyl-CoA pathways
- The extent of biotransformation of phenolic compounds depends on the number and position of hydroxyl (–OH) and methoxy (–O–CH₃) substituents

→ The first study to elucidate biotransformation pathways and rate-limiting steps of phenolic compounds under bioanode conditions
 → Important structure implication on the extent of biodegradation and pathway

GIT Conclusions and Contribution

• Bioanode Inhibition

- Impacted process: exoelectrogenesis, not fermentation
- Responsible inhibitors: parent compounds >> transformation products; phenolic > furanic
- Mixture effects: additive, not synergistic

→ Significant advancement of currently limited understanding of bioanode inhibition

Microbial Interactions

- Diverse microbial community: putative exoelectrogens, furanic and phenolic degraders, and other fermentative bacteria
- Syntrophic (fermenters & exoelectrogens)
- Competitive (exoelectrogens & methanogens)
- Operating conditions impact microbial interactions and relative abundance
- → New insights into microbial interactions in bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass, which can guide future MEC research and development

36 Technical Achievements Membrane separation of MEC effluent for water and biocatalyst recycle

- Experiments were performed on both anaerobically grown Geobacter and autoclaved samples. Experiments with larger area hollow fiber modules could not be performed in a glove box.
- Among the polymeric membranes evaluated PVDF membranes gave higher flux compared to PAN.
- However, flux values with anaerobic Geobacter were 40-50% lower compared to autoclaved samples. It is believed that Geobacter cell size was considerably smaller (<1 micron) compared to the autoclaved samples with average particle size substantially > 1 micron.

