U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase

March 8, 2017
Thermochem Conversion Review
PI: Abhijeet P. Borole, Ph.D.
Oak Ridge National Laboratory
Co:PI’s & Collaborators: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL

Quad Chart Overview

Timeline
- FOA award – CHASE project
- Start: 10/1/2013
- End: 6/30/2017
- 92% complete

Barriers
- Barriers addressed
 - Ct-M. Hydrogen Production
 - Ct-L. Aqueous Phase Utilization and Wastewater Treatment
 - Ct-J. Process Integration - inhibitors

Enabling Technologies
- Novel Technologies, separations

Budget

<table>
<thead>
<tr>
<th></th>
<th>Total Costs FY 12 – FY 14</th>
<th>FY 15 Costs</th>
<th>FY 16 Costs</th>
<th>Total Planned Funding (FY 17-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>448,046</td>
<td>$751,691</td>
<td>$603,502</td>
<td>$331,760</td>
</tr>
<tr>
<td>Project Cost Share (Comp.)</td>
<td>174,426 (28%)</td>
<td>182,645 (20%)</td>
<td>165,025 (21%)</td>
<td>$15,554 (20.1%)</td>
</tr>
<tr>
<td>Partners: GIT, UTK, FCE, Pall, Omni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partners
- Partners (FY15-16)
 - GIT: Georgia Institute of Technology (36%)
 - University of Tennessee, Knoxville (34%)
 - FuelCellEtc. Inc. (< 1%)
 - Pall Corporation (3%)
 - OmniTech International (1%)
1 - Project Overview

Objectives

• Reforming of aqueous phase organics to hydrogen via microbial electrolysis cell (MEC) technology.

• Develop energy-efficient separations to support MEC.

• Demonstrate improvement in hydrogen efficiency.

• Perform life-cycle analysis.

Figure 2-25: Thermochemical conversion process steps for biomass to biofuels
2-Approach-Management

- Management of multi-partner team
 - Biannual meetings
 - Monthly conference calls/Task
 - IP (Inter-lab NDAs)
 - Quarterly Reports
 - Defining 5 PhD thesis uniquely

Understanding of biooil composition

Biooil pH, instability

Hydrogen requirement

Loss of carbon via aqueous phase

GHG reduction

Produce bio-oil /characterize, analyze aqueous phase (UTK)

Microbial electrolysis of pyrolysis aqueous Phase (ORNL, UTK)

Membrane separations Biocatalyst recovery and recycle (ORNL)

Life cycle analysis Techno-economic Analysis (Omni)

Membrane process modules, supplies (Pall)

Electrolysis cell materials (FuelCellEtc, Sainergy)

Develop oil-water Separation methods (GIT)
2 – Approach (Technical)

• Produce hydrogen from bio-oil aqueous phase organics using MEC
• Investigate separation methods to generate feed for MEC and downstream separations to enable water/biocatalyst recycle

• Critical success factors
 1. Developing biocatalysts capable of utilizing all components of bio-oil aqueous phase
 2. Productivity of H₂
 3. Sufficient recovery of H₂ to upgrade bio-oil

• Challenges
 – Managing toxicity of bio-oil substrates (phenol, benzenediol, furans) and increasing their conversion along with complete utilization of acidic and polar compounds.
 – Improving proton transfer for hydrogen generation
 – Maintaining product specificity at higher scale (prevent CH₄)
 – Minimizing bioelectrochemical losses and achieving high conversion efficiency
 – Developing a continuous process

Milestones achieved:
Converted 99%+ furanic compounds with 77% recovery of hydrogen (03/16)
Developed 130 mL cell and achieved 60% H₂ production recovery (12/16)

Metrics:
 a) H₂ production rate >15 L/L-day
 b) Coulombic efficiency > 60%
3.0 – Technical Accomplishments/Progress/Results

Objective 1. Develop a reforming process for efficient conversion of aqueous phase organics to hydrogen via microbial electrolysis.

Progress:
- Increased hydrogen productivity from 2.0 to 11.7 L-H$_2$/L of reactor per day for BOAP
- Maximum productivity using acetic acid as sole substrate = 26 L-H$_2$/L-day.
- Delineated mechanisms of conversion of lignin-derived phenolic intermediates to H$_2$
- Completed speciation of complex electroactive community (fermentative vs. exoelectrogenic vs. methanogenic)
- Developed advanced separation methods (electro-separations, membrane separations)

Milestones completed:
1. 90% conversion of carboxylic acids (06/2015)
2. 16S rRNA - electroactive community (09/2015)
3. Demonstrate TAN removal in MEC (12/2015)
4. 50% conversion of furanic compounds at > 40% coulombic efficiency. (03/2016)
5. Separation of cellular biomass from MEC effluent using membrane system (09/2016)

Go/No-Go criteria met:
1. 90% conversion of carboxylic acids (09/2015)
2. Achieve 60% H$_2$ prod. efficiency (12/2016)

Most important accomplishment:
- Achieve 60% hydrogen production efficiency from switchgrass BOAP in 100 mL MEC (12/2016)
Goal Statement

• Carbon, Hydrogen and Separations Efficiency (CHASE) Project.

• Goals:
 – Produce hydrogen and improve its recovery from biomass-derived bio-oil aqueous phase to reduce loss of carbon and improve efficiency, while reducing lifecycle greenhouse gas emissions.
 – Investigate separation processes to enable the hydrogen production process.

• Outcome:
 – Demonstrated hydrogen productivity at lab-scale achieving levels required for commercial feasibility, and raised the TRL from 2 to 4.
3.a – Overall Technical Accomplishments

- Initiated work on LCA with OmniTech
- Compared steam reforming with MEC
- TEA analysis for MEC and pyrolysis process started with UTK.
- Complete mass and energy balance for biorefinery MEC
- Complete TEA for MEC

Bio-oil Production and Characterization
- 4 batches of oil from switchgrass
- Analysis of the bio-oil organic and aqueous phase
- Switchgrass bio-oil stability analysis

Oil-Water Separation
- Phase separation
- pH adjustment
- Centrifugal contactor
- 95% removal of acidic compounds in MEC
- Reached up to 11.7 L/L-day productivity
- Up to 75% COD removal
- 60% efficiency at 100 mL scale
- Effect of size

Membrane Separations
- Studied 4 type of membranes using sterile effluent
- Demonstrated potential for separating biomass from aqueous effluent
- Separation of MEC effluent containing *Geobacter*

Conversion of BOAP in MEC
- Identification of intermediates from furans and phenolic compounds
- Comparison of batch vs. continuous operation
- Understand inhibition by parent compounds and intermediates
- Bioanode model

Conversion of Furanic and Phenolic Compounds

CHASE

Carbon, Hydrogen & Separations Efficiency
3.b – Technical Achievements: Bio-oil production

Bio-oil production process scheme

- Feedstock: switchgrass
- Pyrolysis temperature: 500°C, 550°C
- Bio-oil: combined by three condensers
- Batch 3 & 4, 2015-16, 10 kg bio-oil generated
- Generated aqueous phase via water addition to bio-oil (4:1)
- Investigated stability of both fractions

Completion of Milestones:
Production of switchgrass bio-oil, characterization and stability analysis.

Pilot auger pyrolysis reactor at UTK Center for Renewable Carbon
Products from switchgrass intermediate pyrolysis

<table>
<thead>
<tr>
<th>Bio-oil production</th>
<th>Bio-oil yield (wt%)</th>
<th>Bio-char yield (wt%)</th>
<th>Non-condensable gas yield (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd batch</td>
<td>51</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>4th batch</td>
<td>52</td>
<td>20</td>
<td>28</td>
</tr>
</tbody>
</table>

Philip Ye, P. Kim, Shoujie Ren, N. Labbe
3.c - Microbial Electrolysis

• **Concept:**
 - Extract chemical energy as electrons at anode via biocatalysis and generate hydrogen at cathode via electrocatalysis
 - Conversion of biooil aqueous phase (boap) organics to **hydrogen**
 - Anode: Production of electrons, protons and CO₂
 - Cathode: Proton reduction to hydrogen at applied potential of 0.3-1V.
 - Requires **electroactive biofilms** tolerant to inhibitory and toxic molecules in bio-oil aqueous phase (furfural, hydroxymethylfurfural, phenolics, etc.)

• Pyrolysis derived aqueous phase utilization
 - Minimize loss of carbon/energy, reduce bio-c instability and corrosivity

Pathway: Bio-oil Aqueous Phase (boap) → electrons + protons (anode) → H₂ (cathode)
Achieved target performance goals with switchgrass-derived BOAP
3.e. Feedstock Specificity for MEC

- Investigated effect of feedstock and pyrolysis process conditions
- Pine wood catalytic pyrolysis aqueous phase as substrate in MEC (courtesy of PNNL/VTT)

Successful demonstration of MEC operation with pine-derived catalytic pyrolysis aqueous phase (*Met Critical Success Factor 1*).
Anode biocatalyst is capable of converting all components of bio-oil aqueous phase, including acetic acid and phenolic acids.
3.g – Technical Achievements - Understanding Mechanism of Furanic and Phenolic Compounds Conversion

Individual Model Compounds Used as Bioanode Substrate

Electron Balance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SA</th>
<th>VA</th>
<th>HBA</th>
<th>FF</th>
<th>HMF</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate input (mmol)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.48</td>
</tr>
<tr>
<td>Experimental condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate electron equivalence (e⁻ mmol/mmol)</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Chemical property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total e⁻ input (e⁻ mmol)</td>
<td>7.2</td>
<td>6.4</td>
<td>5.6</td>
<td>4.0</td>
<td>4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Substrate input × eeq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e⁻ recovered as current (e⁻ mmol)</td>
<td>3.6</td>
<td>0.8</td>
<td>0.4</td>
<td>2.9</td>
<td>2.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode efficiency (%) substrate → current (COD removal × Coulombic efficiency)</td>
<td>50</td>
<td>12</td>
<td>9</td>
<td>72</td>
<td>56</td>
<td>84</td>
</tr>
<tr>
<td>e⁻ recovered as cathodic H₂ (e⁻ mmol)</td>
<td>2.9</td>
<td>0.6</td>
<td>0</td>
<td>2.4</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode efficiency (%) current → H₂</td>
<td>81</td>
<td>76</td>
<td>NA</td>
<td>83</td>
<td>69</td>
<td>78</td>
</tr>
</tbody>
</table>

Xiaofei Zeng, SG. Pavlostathis

Completed Milestone: Demonstrate the anodic conversion of furanic compounds
3.6 – Technical Achievements
Bio-oil separations

Separation scheme:

>70% organics

Centrifugation

- Centrifugal separators
- Electro-separations
- Induced phase separation

Acidic compounds

- Methods under investigation:
 - Centrifugal separators
 - Electro-separations
 - Induced phase separation

Costas Tsouris,
Sotira Yiacoumi, Lydia Park.
3.i – Technical Achievements

Bio-oil separations

- Developed an understanding of molecular contribution to TAN
- Conducted mass balance on TAN (acidic groups) in BOAP and employed the knowledge to oil-water separation
- Relationship of pH/pKa-TAN and mixing phenomenon important to extract TAN from bio-oil.

Results show potential of the methodology to be applied for understanding separation of acidic compounds from bio-oil and subsequent increase in TAN during storage.
3.j – Technical Achievements
Membrane separation of MEC effluent for water and biocatalyst recycle
– Develop a model system (*Geobacter sulfurreducens*) for studying separations of MEC effluent
– Identified conditions for effluent clean-up
– Evaluated cellular biomass effluent with polymer and ceramic membranes
– Establish long term flux stability over time
– Demonstrated effective fouled membrane cleaning

MEC effluent particle size preliminary analysis
Particle size range: 0.1 μm to ~1000 μm
10 % of particles up to 2 μm
50th percentile was ~140 μm

Filtration Performance
Membrane flux: 40 -60 L/hr-m2.
Polymeric membranes better than ceramic zirconia, PVDF better than PAN

Completed Milestone: Develop membrane separation of MEC effluent
Performance and efficiency metrics for MEC development

<table>
<thead>
<tr>
<th></th>
<th>Targets for commercial consideration</th>
<th>Start of Project (Oct 2013)</th>
<th>March 2015</th>
<th>March 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td></td>
<td>16 mL</td>
<td>16 mL</td>
<td>130 mL</td>
</tr>
<tr>
<td>Hydrogen production rate, (\text{L H}_2/\text{L-reactor-day})</td>
<td>(>15)</td>
<td>1.5</td>
<td>2.0</td>
<td>11.7 ± 0.2 (BOAP)</td>
</tr>
<tr>
<td></td>
<td>FCTO MEC using sugars: 0.36 L/L-day</td>
<td></td>
<td>27 (Acetic acid)</td>
<td></td>
</tr>
<tr>
<td>Anode current density, A/m²</td>
<td>20</td>
<td>1-2</td>
<td>5</td>
<td>11.5 (BOAP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 (Acetic Acid)</td>
<td></td>
</tr>
<tr>
<td>Anode CE</td>
<td>(>90%)</td>
<td>(< 40%) [7]</td>
<td>54%</td>
<td>Up to 79%#</td>
</tr>
<tr>
<td>% COD removal</td>
<td>(> 80%)</td>
<td>NA</td>
<td>74.2%</td>
<td>74%</td>
</tr>
<tr>
<td>Applied voltage</td>
<td>(< 0.6 \text{ V})</td>
<td>1.0 V [14]</td>
<td>0.9 V</td>
<td>0.8 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.75V</td>
<td></td>
</tr>
<tr>
<td>Cathode CE</td>
<td>(>90%) at 0.6 V or less</td>
<td>80% with 1 V (acetic acid)</td>
<td>80-96%</td>
<td>Up to 100%$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85%</td>
</tr>
<tr>
<td>Electrical Efficiency</td>
<td>(>150%)</td>
<td>100% with acetic acid</td>
<td></td>
<td>162%</td>
</tr>
<tr>
<td>Resistance</td>
<td>(< 80 \text{ mΩ m}^2)</td>
<td>36 – 189 mΩ m² (non-BOAP)</td>
<td>NA (BOAP)</td>
<td>105 mΩ m² (BOAP)</td>
</tr>
</tbody>
</table>

Achieved hydrogen productivity goals required to show commercial feasibility! *(Met 2nd Critical Success Factor)* Elevated technology from TRL 2 to TRL 4
3.m Techno-Economic Analysis (TEA)

- Biorefinery MEC integration
- Utilization of carbonyl compounds in BOAP to generate hydrogen
- MEC capital costs $2000/m³
- TEA model to assess MEC feasibility

Sensitivity Analysis

H₂ productivity = 20 L/L-day
Capital costs:
$2000 to $4000: $2.5 to $3.25/kg
Feedstock costs:
(0 to $85/ton): $2.5 to 3.9/kg
Conversion efficiency:
45-57%: $3.9 to $3.6/kg

Target performance for application feasibility

10-fold reduction in price of H₂ during the CHASE project
3.n Life-Cycle Analysis (LCA)

- Comparison of Steam Methane Reforming (SMR) to MEC process
- Developed PFDs for Hydrogen generation in biorefinery using natural gas + pyrolysis gas vs. BOAP MEC + pyrolysis gas reformer
- Extracted mass balance for SMR from PNNL-25053. Conducted energy balance to complete dataset. Similarly, mass and energy balance for MEC process under way
- Determined baseline LCA for SMR to compare with MEC using SimaPro.
- Collaboration with OmniTech International and UTK
Publications/Patents

- Switchgrass bio-oil production & characterization, *J. Anal. & Applied Pyrolysis*
- Separation of bio-oil components, *J. Anal. & Applied Pyrolysis*
- Third manuscript on stability in preparation
 - Neutralization of pH to separate bio-oil, *Energy & Fuels*
- TAN analysis of BOAP, *Fuel*
- MEC Technology status (*ECS Interface*), MEC impact analysis: *Sustainability*
- Book chapter on biorefinery MXCs
- Effect of flow, RT, on MEC performance – *Biochem. Eng. J.*
- Comparison of batch and continuous bioanode operation in MFCs – *Biochem. Eng. J.*
- Proton transfer in MECs – *Sustainable Energy & Fuels*
- Biocomplexity of anode biofilms – in review
- Effect of redox potential – in preparation…
- + 3 more….
- Provisional Patent for Biorefinery MECs – applied June 2016
- TEA analysis of MEC with steam reforming.

13 Publications + one patent to date + 5 manuscripts in review

Efficiency: < $150k/pub.
4.a Relevance

Demonstrating conversion of biorefinery process waste to bioenergy:
A path to improving energy efficiency and energy recovery from biomass

Waste electrons to...

...via bio/electrosynthesis
4.b Relevance
Integrating the biomass resource into the bio-economy via H₂ carrier → has multiple benefits…

- Fuel Cell H₂ Vehicles
- Renewable Gasoline/Diesel
- Upgrading Bio-oils
- Chemical Building Blocks
- Polymers
- Reducing Agent for Bioproducts

- Biomass
- Electricity
- MEC
- Waste
- Resource Recovery
 Phosphorous, water, nitrogen

Value Added Applications
- Power Generation
- Hydrogen/Natural Gas Infrastructure
- Fuel Cell H₂ Vehicles
- Renewable Gasoline/Diesel
- Upgrading Bio-oils
- Chemical Building Blocks
- Polymers
- Reducing Agent for Bioproducts

Electricity Grid
- Wind
- Solar PV
- Hydrogen Storage/Distribution
- Power Generation
- MEC
- Waste
- Resource Recovery
 Phosphorous, water, nitrogen

Value Added Applications
- Hydrogen Vehicle
- Synthetic Fuels
- Upgrading Oil/Biomass
- CO₂
- N₂
- NH₃
- Electricity
- Waste
- Resource Recovery
 Phosphorous, water, nitrogen
5.a Future Collaborations

- PNNL (MEC conversion of VTT catalytic pyrolysis aqueous phase and product characterization, algal HTL water)
- NREL (TEA spreadsheet - pyrolysis process)
- Iowa State University
 - Aqueous phase from ISU fractionator (Centralized Biorefining)
 - TEA analysis of MEC-SF integration process
- USDA, Peoria
 - Conversion of tail-gas recycle pyrolysis aqueous phase
 - Potential integration of farm-scale pyrolyzer and farm-scale MEC for distributed H_2, bio-oil and bio-char.
- Industry
 - Collaboration on Integrated Biorefinery Optimization
 - Integration of MEC into thermochemical biorefinery
5.b – Future Work

• Scale-up of MEC to 1 L
• Test multi-MEC stack for distributed farm production of H₂ and a stable bio-oil
• Optimize biocatalyst growth for industrial application
• Complete LCA analysis of MEC process
• Complete separation process analysis for optimal feedstock utilization (for downstream MEC and hydrotreating unit ops)
• Complete publication of manuscripts as follows:
 – Separation of oil-water using centrifugal separators and capacitive deionization (2)
 – Membrane separation of MEC effluent
 – Improvements in MEC potential efficiency, Effect of MEC size on performance, Composition-function relationships, omics analysis (4)
 – TEA/LCA analysis (2)
• Identify opportunities for scale-up and integration of MECs into biorefineries
Summary

• **Overview**: Improved hydrogen efficiency via a hybrid biocatalytic-electrocatalytic process (MEC), using a biomass-derived stream, while addressing carbon and separations efficiency.

• Holistic **approach** covering bio-oil production, characterization, conversion of boap to H$_2$, process recycle and TEA/LCA analysis.

• **Accomplished** development of an electroactive biocatalyst and MEC to convert boap to H$_2$ at efficiency > 60%. Demonstrated effective conversion of problematic carbonyl compounds in MEC.

• **Addressed** C, H and separations efficiency and barriers Ct-M, Ct-L, Ct-J **relevant** to BETO.

• **Future work**: Scale the process to modular repeat unit (1-5L) while maintaining productivity at 15 L/L-day and > 60% efficiency.
Extra slides
3.c - Hydrogen Production: Comparison with Existing Technologies

- Bio-oil steam reforming using Pt-Re or metal catalysts:
 - Low H_2 yield (0.1 to 40 %) vs. 64-91% for MEC.
 - High coking vs. no coking in MEC
 - Expensive catalyst vs. regenerable biocatalyst for MEC.

- Bioconversion:

<table>
<thead>
<tr>
<th>Process scheme</th>
<th>Theoretical yield</th>
<th>Observed yield</th>
<th>Free energy change (for H_2-producing step)</th>
<th>Overall observed energy yield</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hypothetical H_2 production</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Hexose to ethanol to H_2 via autothermal reforming</td>
<td>10</td>
<td>9.5</td>
<td>-265^a kJ/mole</td>
<td>$\sim 83%$</td>
<td>Prohibitive catalyst (Rh) cost10</td>
</tr>
<tr>
<td>3 Dark-light fermentation: Glucose \rightarrow acetate \rightarrow H_2</td>
<td>8</td>
<td>7.1</td>
<td>$+164$ kJ/mole</td>
<td>59.2%</td>
<td>Limited by light penetration and cost39</td>
</tr>
<tr>
<td>4 Methanogenesis-steam reforming</td>
<td>8</td>
<td>6.0</td>
<td>$+261$ kJ/mole</td>
<td>50.5%</td>
<td>Mature technology components3,40</td>
</tr>
<tr>
<td>5 MEC</td>
<td>12</td>
<td>8.2</td>
<td>$+104.6$ kJ/mol</td>
<td>64%</td>
<td>Nascent technology 3,30</td>
</tr>
</tbody>
</table>

a Processes 3–5 require energy input for the hydrogen-producing step, but this step is energy yielding in process 2. While the hydrogen producing reaction is energy-yielding, energy input is required for production of ethanol from hexose.

Microbial electrolysis is a high efficiency, high yield, practical alternative available for hydrogen production.

4 - Relevance

• Contributions to BETO MYPP goals:
 – Developed strategy for improving carbon and hydrogen conversion efficiency and demonstrated feasibility of conversion using switchgrass as feedstock (Barriers Tt-M, Tt-N)
 – Initiated investigations into separations technology for extracting acidic compounds from biooil and for water recycle (Tt-O)
 – Address ‘Balance of Plant’ issues: wastewater treatment, minimizing organics in aqueous phase, more efficient carbon and hydrogen usage process recycle
 – Address knowledge gaps in chemical processes via bio-oil characterization, understanding and driving separation and conversion of key problem (acidic/polar) compounds (Tt-H, Tt-L).

• Patent applications / Invention disclosures
 – Hydrogen production from pyrolysis-derived aqueous phase (June 2016).
 – Separation of acidic molecules from biooil (in preparation)
4 – Relevance…

• Application in emerging bioenergy industry
 – Establish MEC as core technology for hydrogen production in thermochemical biooil upgrading
 – Potential application for producing hydrogen from fermentation effluent and lipid-extracted algae

• Support of strategic goals (Section 2.2.2.1 of mypp)
 – Use of extracted electrons for increasing efficiency of production of biofuels (butanol) via bioelectrochemical systems (p. 2-71, 2-79 –’yet-to-be-discovered technologies’)
 – Production of biochemicals (1,3-propanediol; 1,4-butanediol)

• Sustainability analysis and communication
 – Consumptive water use, wastewater treatment.
3.j – Technical Achievements
Pathways for Conversion of Furanic and Phenolic Compounds in Bioanode

- Identification of intermediates by mass spec
- Pathway analysis results has lead to better understanding of complex bioanode conversion bottlenecks.

Xiaofei Zeng, SG. Pavlostathis
3.c. Electroactive Biofilm Development via Targeted Evolution

- Microbial consortium capable of converting all class of compounds in BOAP
- Negligible presence of methanogens/archaea
- Reproducibility of consortia in duplicate MECs
- No external mediators and potentially mediator-free operation
- 7-10% **Geobacter**
- Capable of tolerating furanic and phenolic compounds
3.f – Technical Achievements
Conversion of Pine Wood Aqueous Phase

Conversion of pine wood aqueous phase

Anode biocatalyst capable of converting phenol and benzenediol
GIT Conclusions and Contribution

Conversion of Furanic and Phenolic Compounds
- Promising Coulombic efficiency and H₂ yield by all five compounds utilized
- Two-step biotransformation: fermentation (independent), exoelectrogenesis (dependent)
- Furanic compounds more productive substrates than phenolic compounds

→ Quantitative information on the extent of biotransformation and contribution of individual furanic and phenolic compounds to MEC H₂ production

Biotransformation Pathways
- Phloroglucinol vs. benzoyl-CoA pathways
- The extent of biotransformation of phenolic compounds depends on the number and position of hydroxyl (–OH) and methoxy (–O–CH₃) substituents

→ The first study to elucidate biotransformation pathways and rate-limiting steps of phenolic compounds under bioanode conditions
→ Important structure implication on the extent of biodegradation and pathway
GIT Conclusions and Contribution

- **Bioanode Inhibition**
 - Impacted process: exoelectrogenesis, not fermentation
 - Responsible inhibitors: parent compounds >> transformation products; phenolic > furanic
 - Mixture effects: additive, not synergistic

 → **Significant advancement of currently limited understanding of bioanode inhibition**

- **Microbial Interactions**
 - Diverse microbial community: putative exoelectrogens, furanic and phenolic degraders, and other fermentative bacteria
 - Syntrophic (fermenters & exoelectrogens)
 - Competitive (exoelectrogens & methanogens)
 - Operating conditions impact microbial interactions and relative abundance

 → **New insights into microbial interactions in bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass, which can guide future MEC research and development**
Technical Achievements
Membrane separation of MEC effluent for water and biocatalyst recycle

- Experiments were performed on both anaerobically grown Geobacter and autoclaved samples. Experiments with larger area hollow fiber modules could not be performed in a glove box.

- Among the polymeric membranes evaluated PVDF membranes gave higher flux compared to PAN.

- However, flux values with anaerobic Geobacter were 40-50% lower compared to autoclaved samples. It is believed that Geobacter cell size was considerably smaller (<1 micron) compared to the autoclaved samples with average particle size substantially > 1 micron.