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The demand for hydrogen is expected to grow in the
near-term with ramp up of FCEVs deployment



How much hydrogen does a FCEV need
each day?

66 mi/kg_H,

Source: www.fueleconomy.gov 67 mi/kg_H,

» Average annual driving distance in the U.S. ~ 12,000 — 13,000 mi
v’ ~34 miles per day (DOT-FHWA)

Average FCEV needs ~0.5 kg of hydrogen per day


http://www.fueleconomy.gov/
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More than 43,000 fuel cell vehicles in CA within 5 years

Source: CARB (July 2016 report)
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Equivalent to more than 20 TPD of hydrogen in CA alone by 2022



Important questions that beg for answers

» Where hydrogen will come from in the
near-term? (chicken and egg problem)

» How can we bridge today’s production
with future large scale hydrogen?

»> Are there opportunities than can help the
transition (incremental approach) as
hydrogen demand grows over time?




Requirements of new hydrogen
production sources

>

>

Large scale production, high purity (>80%)

Low capital investment (low risk), low cost
molecules (competitiveness)

Properly distributed where demand exits
or is growing

Low adverse environmental impacts




Possible sources for hydrogen to satisfy
growing demand in the near-term

1. Building new SMR hydrogen plants (central or
on-site)

2. Utilizing excess capacity in existing merchant
hydrogen plants

3. Exploring existing byproduct hydrogen from
industrial operations




Option 1(a): Building New Central SMR
Hydrogen Plants

» Scale: 20-200 TPD
> Requires large capital investment (100s million$)

» Requires demand certainties and long-term contracts
(low risk)

» Long lead time to operation (justification, permitting,
engineering/design, construction, etc)



Option 1(b): Building New Onsite Hydrogen
Plants

» Scale: 0.5-2 TPD
» Shifts the burden and risk to HRS operator
» Requires high utilization of production capacity from day 1

» Challenges with footprint, purification, and other
complexity not relevant to the HRS business



Option 2:
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» Total U.S. merchant H, capacity ~ 13,000 TPD, 260 TPD LH,
» Only 26 TPD in CA and 40 TPD in NY for (non-refinery) customers

— With 10% excess non-refinery capacity - 6.6 TPD or just 13,000
FCEVs



Option 3: Exploring existing byproduct hydrogen
from industrial operations

a. Chlorine Plants > ~1000 TPD of H,

Process heat vented

2 NaCl + 2 H,0 & Cl, f@ﬂ 2 NaOH
High purity

b. Cracker Plants - more than 7,000 TPD of H,

/_\ Process heat \

C,Hg + heat — C,H, +®+ other HC
T 75-90%
NG purity
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Option 3: Exploring existing byproduct hydrogen
from industrial operations (Chlorine plants)
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» 46 Chlorine production plants with ~13 million tonne/year chlorine capacity
v" 0.35 million tonne H,/year (~1,000 TPD of H,)




Option 3: Exploring existing byproduct hydrogen
from industrial operations (Cracker plants)
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» 51 ethylene production plants with ~20 m|II|on tonne/year capacity
_\/ 1.3 million tonne H,/year (> 3,600 TPD of H,)
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Significant cracker capacity addition (>50%) Is

planned by 2020 (due to low cost NG)

Annual Ethylene Production Capacity (million tonne/year)
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Option 3: Potential byproduct hydrogen from
Industrial operations

~8,000 TPD of H,
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Heating value of H, in the fuel gas to satisfy
process heat can be replaced with NG

set free

C,Hg + heat — C,H, +®+ other HC

M~

NG

* Hydrogen burned for its Btu value can be replaced with
supplemental NG

= 1mmBtu of NG ~ S3-4
> cost of displaced H, ~ $0.3-50.4/kg,,,

= Cost of PSA purification is ~$0.1-0.2/kg,,,
v" Cost of purified hydrogen ~ $0.5-50.6/kg,,,
v" Cost of H, compression is additional




Hydrogen Produced from Créckers IS Low
Carbon Fuel

SMR: 1.4-1.5 Btu NG > 1 Btu H,
Crackers: 1 Btu NG -> 1 BtuH,

= Llower GHG emissions than H, from SMR

» ~30% less GHG than SMR H,
» Other LCA methods result in lower GHG emissions



Low GHG emissions of byproduct hydrogen

Well-to-Plant Gate GHG Emissions per kg, (kgCO,.)
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Incentives in CA promote low-carbon hydrogen

Time Period Transfers ! Total Volume? 2 Avg. Price' 3
(number) (credits-MTs) ($ per Credit)

el s =" S s

CY 2015 578 2,852,000 $62

CY 2014 304 1,667,000 $31

Source: https://www.arb.ca.gov/fuels/Icfs/credit/20170509 aprcreditreport.pdf

LCFS Credit Values
for Selected

Representative
H, Pathways

: Credit\falue ($/kg) 1 1kg=1.04 GGE

* Eerliﬂed LCFS Pal:hwa\r
® Staff Estimate

. Source: Sam Wade, CARB presentation at CHBC 2016
N\ ——


https://www.arb.ca.gov/fuels/lcfs/credit/20170509_aprcreditreport.pdf

Check points for byproduct H,

v' Large scale production, high purity (>80%)

v Low capital investment (low risk), low
cost molecules (competitiveness)

v" Properly distributed where demand exits
or is growing

v Low adverse environmental impacts
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aelgowainy@anl.qov
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