
Integration of Nutrient and Water 
Recycling for Sustainable Algal 
Biorefineries

03/06/2017
ALGAE TECHNOLOGY AREA

Presenter:  Sridhar Viamajala, The University of Toledo 

This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Bioenergy Technologies Office (BETO) 
2017 Project Peer Review 



Goal Statement
Achieve high biomass productivity and recovery at 

lower cost through:
o Microalgae cultivation in high pH and high alkalinity 

media.  
o Develop methods for harvesting and media recovery (for 

reuse) AND without use of contaminating chemicals (e.g. 
flocculants).
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Quad Chart Overview

 Project start : 2/1/2013
 Project end : 8/31/17
 Percent complete: 90%

 Barriers addressed
o Al-B. Algal Fuel Production
o Feedstock development and nutrient supply
o Harvest - Dewatering and water recycle
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Timeline

Budget

Barriers

 The University of Toledo – Lead 
(37%)

 Montana State University (37%)
 University of  North Carolina (12%)
 University of Minnesota (6%)
 Clearas Water Recovery, Inc. (8%)

Partners
Total 
Costs FY 
12 –FY 
14

FY 15 
Costs

FY 16 
Costs

Total 
Planned 
Funding
(FY 17-
Project End 
Date)

DOE 
Funded

868,860 861,717 837,776 431,581

Project 
Cost 
Share
(Comp.)*

201,377 213,137 221,482 114,097



Project Overview

PROJECT OBJECTIVES:
 Decrease cost of cultivation through reduction in CO2 supply cost and 

improvements in productivity. 
 Develop low-cost water-recovery/harvesting methods.
 Characterize the development, structure, and stability of microbial 

communities in alkaline algal systems†.
 Perform economic and life cycle assessments (LCA) for sustainable algal 

biorefineries‡.
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Feedstock 
Conversion

Primary 
dewatering 

- Smart 
hydrogels

Secondary 
dewatering

Alkaliphilic 
algae grown 
in raceway 

ponds

Feedstock 
Cultivation

Feedstock 
Harvesting

Recycle Water

Makeup
Water

Nutrients

†Fields, M.W., et al. (2014)  Applied Microbiology and Biotechnology. 98: 4805-4816
†Bell T.A.S., et al. (2016) Frontiers in Microbiology. 6:1480. 
‡Hise, A.M., et al., (2016) Bioresource Technology. 220:. 271-281.
‡Kern, J.D., et al., (2017) Bioresource Technology. 225: 418-428.



Technical Approach - Challenges

 Challenge 1: High cost of CO2 supply 

 Total algal biomass selling price 
≈ $420/ton-biomass (excluding 

harvesting costs) 
 Cost for CO2 supply 

= $90/ton-biomass
>20% of total biomass cost
~50% of variable operating costs

210 $/ton

101 $/ton

22 $/ton

90 $/ton 

Ponds + Inoculum
OPEX costs
Nutrients
CO2

(CO2 supply cost)

Davis, R., et al. (2016). Process Design and Economics for the Production of Algal Biomass. Technical Report NREL/TP-5100-64772
Huntley, M.E., et al. (2015) Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research, 10: 249-265.2 5



Technical Approach - Challenges

 Challenge 2: Simultaneous availability of land 
and CO2 resources  Constraints 

 Land – barren, slope <2%
AND

 CO2 transport distance – <4.8 km (for 
economically viable CO2 transport)

 Max. biofuel production
= 44 million barrels per year

 EISA mandate for non-cellulosic 
advanced biofuel  

= 100 million barrels per year

Quinn, J. C., et al. (2012). Geographical assessment of microalgae biofuels potential incorporating resource availability. BioEnergy Res. 6: 591-600
Bracmort, K. 2014. Congressional Research Service Report 7-5700. https://www.fas.org/sgp/crs/misc/R42122.pdf.

If constrained by CO2 availability, microalgae biofuels will likely be limited to 
<50% of the EISA “advanced biofuel” mandate
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Technical Approach - Challenges

 Challenge 3: Frequent culture crashes

 Bacteria, viruses, zooplankton, 
invasive algae

 Productivity loss and/or 
“predator management costs”

McBride R.C. et al. (2014). Contamination management in low cost open algae ponds for biofuels production. Ind. Biotechnol. 10: 221 -227
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“Possible solution – Cultivation of 
microalgae at high alkalinity”

 Advantage 1: Alkaline solutions scavenge CO2 from 
the atmosphere at rapid rates.
◦ Costs and geographical constraints associated with CO2

supply can be mitigated (or eliminated)
 Advantage 2: Harsh pH conditions (pH>10) can 

mitigate detrimental contamination and predator 
populations 

 e.g. Daphnia (zooplankton) egg and neonate viability is low

◦ Allows sustained maintenance of desired culture
 e.g. Commercial Spirulina production is successfully carried out in high pH 

media

Pendyala, B., et al., (2016) High yield algal biomass production without concentrated CO2 supply. US/62/328,296 filed 04-27-16.
Vijverberg, J. et al. (1996). Decrease in Daphnia egg viability at elevated pH. Limnology and Oceanography, 41:789-794 . 8



Approach – Critical success factors
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 Biomass productivity of 20g/m2/d or higher
 “Crash free” cultivation for extended periods (>3 

months)
 Biomass composition favorable for biofuel 

production 
◦ High carbohydrate and/or lipid content
◦ Low protein and ash content

 Low residence time (<3h) and high output 
concentrations (>20 g/L) for the hydrogel harvesting 
process 

 Demonstrated reusability of media after harvesting



CO2 transfer from the atmosphere into 
alkaline media

10
Danckwerts, P.V., Gas-liquid reactions. 1970: McGraw-Hill Book Co.
Cents, A. H. G., et al. (2005). Absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited. Chem. Eng. Sci. 60: 5830-5835.
Weissman, J.C., et al. (1988). Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotech. Bioeng. 31: 336-344.

𝐽𝐶𝑂2 = CO2 transfer flux (mol/m2/h)

𝐶𝑂2(𝑎𝑞)
∗ = Dissolved CO2 in equilibrium with 

the atmosphere; calculated from 
Henry’s constant.

𝐶𝑂2(𝑎𝑞)
𝑏𝑢𝑙𝑘 = Aqueous CO2 concentration; 

determined by the equilibrium 
established with HCO3

- ,OH- and 
CO3

2- ions in the medium (Eqs. 1 
and 2) 𝐶𝑂2(𝑎𝑞)

𝑏𝑢𝑙𝑘 =
𝐾2

𝐾1
×

𝐻𝐶𝑂3
− 2

𝐶𝑂3
2−

𝑘𝐿 = Mass transfer coefficient; governed by 
mixing rates and pond depth 

= 0.1m/h for 20cm ponds mixed at 30cm/s
𝐸 = Enhancement factor for mass transfer 

due to chemical reaction; 

= 1 +
𝒟𝑂𝐻−∙𝒟𝐻𝐶𝑂3

−∙𝐾1∙ 𝑂𝐻
−

𝒟𝐶𝑂2(𝐾1∙[𝐶𝑂2 𝑎𝑞
∗ ]∙𝒟𝐻𝐶𝑂3

−+𝒟𝑂𝐻−)

where, the subscripted 𝒟’s represent diffusion 
coefficients of the various dissolved species

Mass transfer flux:

, 

, 

, 

Bulk reactions: 

(from atm)
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CO2 transfer from the atmosphere into 
alkaline media
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To maintain high atmospheric CO2 flux and 
allow growth without concentrated CO2 input, 
 Maximize mass transfer driving force 

([𝐶𝑂2 𝑎𝑞
∗ ] − [𝐶𝑂2 𝑎𝑞

𝑏𝑢𝑙𝑘 ])

 Maximize enhancement factor (𝐸) by 
maintaining high pH; E~40 at pH 10.2

 High media alkalinity to maintain high 
HCO3

- concentrations in the medium for 
photosynthesis to occur without inorganic 
carbon limitations



Cellular DIC transport and fixation in 
alkaline media

 Under alkaline conditions, DIC uptake occurs via CCMs 

 High media DIC increases rate of cellular DIC transport

 Simultaneously, the high cellular DIC flux is also expected to drive 
the light dependent reactions towards higher production of 
NADPH for use in carbon fixation. 
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Light dependent reactions 

Light independent reactions 
Chloroplast

Stroma

Thylakoid

Cytosol

ATP ATP ATP

RUBisCO
3PGA

Calvin cycle

PS I Fd

hν

e-

NO3
-

O2

2H2O4H+ + O2

PS II

4e-

e-

NADP+ NADPH

hν

Cyclic electron transport 
e- e-

e-
e-

Fluorescenc
e and NPQ

C
A

H
7 C

A
H

9

C
A

H
3

– indicates upregulation of process in the 
presence of high media DIC

- indicates carbonic anhydraseCA

ATP

C
A

H
1 C

A
H

2 C
A

H
6

Periplasmic space

Moroney, J. V.; Ynalvez, R. A. (2007) Proposed CO2 concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell. 6: 1251-1259.



Results – Isolation and strain 
identification

 The alkaliphilic 
strain was isolated 
from Soap Lake, WA.
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0.1

Chlorella sp. IFRPD

Chlorella sp. ZJU0204

Chlorella sorokiniana

Chlorella vulgaris str. UTEX2714
8519

1183

Chlorella sp. ZJU0205

Chlorella sp. SSKV1

Chlorella sorokiniana str. UTEX 246

SLA-04
10000

5854

Chlorella sorokiniana isolate 34-2

Chlorella thermophila str. ITBB HTA1-65

Chlorella sp. TISTR 8990
10000

8745

10000

5344

Vadlamani, A. 2016. “Enhanced biomass and lipid productivities of outdoor alkaliphilic microalgae cultures through increased media alkalinity” 
PhD Thesis. The University of Toledo.
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Results – Cultivation in high pH and high 
alkalinity media
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 Experiments were performed in 30L outdoor raceway ponds.
 Without concentrated CO2 inputs in high alkalinity media (40-60 meq/L), 

◦ Average areal productivities were 22 g/m2/d
◦ Maximum productivity of 32 g/m2/d was measured.

 Average productivities of cultures grown without concentrated CO2 inputs 
were similar to productivities of cultures grown with concentrated CO2
input (pH maintained at 8.5).

Vadlamani, A. 2016. “Enhanced biomass and lipid productivities of outdoor alkaliphilic microalgae cultures through increased media alkalinity” 
PhD Thesis. The University of Toledo.
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Results – Cultivation in high pH and high 
alkalinity media
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 Cultures growing at pH>10 and in the presence of high media DIC 
show high ETRmax, Y(II), and α values.
◦ Better utilization of incident light for photosynthetic carbon fixation 

 Cultures growing in low DIC media (pH>10) show high dissipation 
of electrons (cyclic electron transport) 
◦ Electron generation is inhibited due to low availability of cellular DIC. 

Energy flow Description Notation High Alk.
(60meq/L)

Low Alk.
(7meq/L)

Towards carbon 
fixation  

Effective PS II quantum yield
(photons utilized per incident photons) Y(II) 0.409 0.252

Photosynthetic efficiency 
(electrons per photon) α 0.217 0.13

Maximum electron transfer rate 
(µmole/m2/s) ETRmax 33.2 13.8

Dissipation 

Quantum yield of regulated dissipation 
(photons dissipated per incident photon) Y(NPQ) 0.047 0.085

Quantum yield of unregulated dissipation
(photons dissipated per incident photon) Y(NO) 0.544 0.663

Vadlamani, A. 2016. “Enhanced biomass and lipid productivities of outdoor alkaliphilic microalgae cultures through increased media alkalinity” 
PhD Thesis. The University of Toledo.



 CO2 transfer rates were experimentally determined in alkaline cultures and abiotic 
controls. 

 Measurements of DIC increase were made at night by assessing changes in carbonate 
alkalinity

 𝑘𝐿 values were estimated from previous experimental measurements corrected using 
scaling factors (for linear velocity and pond depth) recommended by Weissman et al. 

 𝐸 was estimated from measured pH. 
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Results – Correlation of theoretical mass 
transfer prediction with experimental 
measurements

Experiment
Predicted Experimental

kL (m·h -1) kL·E (m·h -1) Mass transfer flux 
(g-C·m -2·d -1)

Mass transfer flux
(g-C·m -2·d -1)

Trial 1 0.04 1.51 5.25 6.18 ± 0.61
Trial 2 0.09 2.48 7.80 8.63 ± 0.85
Trial 3 0.13 4.70 7.46 8.25 ± 0.81
Abiotic 
Control 0.05 2.55 8.4 7.7 ± 0.2

Weissman, J.C., et al. (1988). Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotech. Bioeng. 31: 336-344.



Results – Outdoor cultivation at 750L

Phototrophic cultivation
 Biomass productivity 

= 23 g/m2/day
 Lipid productivity    

= 2 g/m2/day
 Carbohydrate productivity  

= 1.8 g/m2/day
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Results – Macro/micro nutrient utilization
 High biomass productivities were 

maintained with low N in the media 
 The resulting biomass also has a low N-

content and higher carbohydrate and lipid 
content
 Low-N biomass is desirable for conversion 

processes such as hydrothermal liquefaction 

 Biomass and lipid productivities are 
improved (up to 33%) in low-Ca (1.5 mg/L 
and low-Mg (0.5mg/L) media
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Summary of cultivation studies

 High media pH (>10) drives rapid transfer of CO2 from the 
atmosphere to growth media

 High DIC concentrations “buffer” the media allow high media 
concentration of HCO3

-

◦ Improves “electron transfer rates” – Likely due to higher rate of delivery 
of CO2 to RuBisCO

 Under high-pH AND high-alkalinity conditions, cultures 
achieve high productivity even in the absence of concentrated 
CO2 inputs.

 In outdoor cultivation experiments over 2 years, we haven’t 
observed a “culture crash”

 Biomass composition can be improved by “adjusting” nutrient 
composition without significantly compromising biomass 
productivity 19



Swollen gel De-swollen gel

Stimulus type Water absorption Water release 

Temperature 

T <30˚C 

 

> 33˚C 
 

 
 

pH sensitive 

high pH (>7) 
 

 

low pH (<5) 
 

 
 

Media recovery and harvesting through 
use of stimuli-sensitive hydrogels

 Hydrogels that absorb and release water in response to an 
external stimulus

 Examples –
◦ N-isopropyl acrylamide (pNIPAAm) is a temperature-sensitive hydrogel
◦ Poly acrylic acid (PAA) is a pH-sensitive hydrogel
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Dilute algae suspension 
from growth reactor

Gel swelling

Sieve for 
recovery of  
swollen gel

Gel collapsing

Sieve for 
recovery of 
de-hydrated 
gel

Cell-free water 
for recycle to 
growth reactor

Concentrated 
algae

Step 1

Step 2

Step 3

Step 4

Key process parameters:
 Swelling and de-swelling rates in culture medium
 Water uptake per gram of de-hydrated gel (Swelling ratio)

 Operating conditions
◦ Swelling and de-swelling period 
◦ Culture-swollen gel volume ratio 21

Hydrogel dewatering overview



TSS Sampling 1
5mL; 9.7mg

Feed
1.1g/L 

560mg biomass
500mL

Stage 1

260mL media

470mg
235mL 
2.0g/L

348mg
26mL
13.5g/L 

365mg
50mL
7.3g/L

442mg
114mL
3.9g/L

TSS Sampling 4
2mL; 26.9mg

TSS Sampling 3
5mL; 36.5mg

TSS Sampling 2
5mL; 19.4mg

Recovered 
concentrate 
95 g/L 
234mg biomass
2.5mL

Hydrogel and  
media recovery

9.7mL media59mL media116mL media 22mL media

Heat

Recovered aqueous phase
477mL media (measured)

112 mg biomass (estimated 
from overall mass balance)

Stage 2 Stage 3 Stage 4 Stage 5

Deswelled gel 
13g

Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat

Deswelled gel 
6g

Deswelled gel 
3g

Deswelled gel 
1g

Deswelled gel 
0.5g

TSS sampling
214mg biomass 

4.9mL media

Stage 6

Hydrogel and 
media recovery

Heat

Deswelled gel 
0.25g

4.8mL media

Stage 7

Hydrogel and 
media recovery

Heat

Deswelled gel 
0.25g

1.1mL media

Stage 8

Hydrogel and 
media recovery

Deswelled gel 
0.075g

TSS Sampling 4
1mL; 21.6mg

TSS Sampling 4
1mL; 32.6mg

TSS Sampling 4
1mL; 67.2mg

331mg
15.3mL
21.6g/L

306mg
9.4mL
32.6g/L

241mg
3.6mL
66.8g/L

Stage-wise concentration of microalgae cultures 
using PNIPAAm hydrogels

 Concentration was increased from 1g/L to 100 g/L 
BUT 2h duration per stage (lengthy process time)

◦ Slow swelling of PNIPAAm

◦ Several stages due to the low mass of absorbent 
gels used in each stage

22



Improvements in performance of temperature-
sensitive gels

 Semi-IPN 10 gels (10% PVA + 
90% p-NIPAAm) showed more 
rapid swelling and deswelling

 Gels retain performance over 
multiple cycles

 Semi-IPN gels have greater 
mechanical strength

23
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TSS Sampling 1
10mL; 25.9mg

Feed
1.34g/L 
268mg biomass
200mL

Stage 1
τ = 30min 

Aqueous phase: 
8.8mg biomass
100mL media

233mg
90mL 
2.59g/L 

106mg
3.95mL
27.01g/L 

166mg
14mL
11.86g/L 

194mg
30mL
6.48g/L 

TSS Sampling 4
2mL; 54.0mg

TSS Sampling 3
2mL; 23.7mg

TSS Sampling 2
5mL; 32.4mg

Recovered 
concentrate 
49.38 g/L 
103mg biomass
2.1mL

Hydrogel and  
media recovery

Aqueous phase: 
3.0mg biomass
1.9mL media

Aqueous phase: 
4.9mg biomass
14mL media

Aqueous phase: 
6.2mg biomass
55mL media

Aqueous phase: 
5.3mg biomass
8.1mL media

Heat

Recovered growth media
28mg biomass 
179mL media

Stage 2
τ = 30min 

Stage 3
τ = 25min 

Stage 4
τ = 25min 

Stage 5
τ = 15min 

Deswelled gel 
15g

Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat

Deswelled gel 
7.5g

Deswelled gel 
1.837g

Deswelled gel 
0.936g

Deswelled gel 
0.44g

TSS sampling
136mg biomass 

Stage-wise concentration of microalgae cultures 
using semi-IPN10 hydrogels

 Total process time reduced to ~2.5h. 

 Final culture concentration = 50g/L
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Conclusions for hydrogel-based harvesting

 With the hydrogel dewatering method, concentrations of up to 
~100 g/L can be achieved.

 Gels can be re-used over multiple cycles without loss of gel 
functionality
◦ High mechanical strength and elasticity

 Overall processing time could be <3h  – comparable with 
residence times of other conventional processes

 The energy costs associated with the hydrogel-dewatering 
could be minimized by integration with low-grade waste heat 

25
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(Not a template slide – for information purposes only)

• The following slides are to be included in your 
submission for Peer Evaluation purposes, but 
will not be part of your oral presentation –

• You may refer to them during the Q&A period if 
they are helpful to you in explaining certain 
points.  



Cellular DIC transport and fixation 
mechanisms in alkaline media

8

Light dependent reactions 

Light independent reactions 
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Mass transfer rate: 

, 

(2) , 

, 

Bulk reactions: 

(from atm)

CO2 transfer from the atmosphere 
into alkaline media



300

20

40

60

80

100

120

9 9.2 9.4 9.6 9.8 10 10.2 10.4

H
C

O
3-

co
nc

en
tra

tio
n 

(m
M

)

pH

0

2

4

6

8

10

12

14

K
L·E

 (m
/h

)

0

20

40

60

80

100

120

En
ha

nc
em

en
t f

ac
to

r (
E)

 

-5

0

5

10

15

M
as

s t
ra

ns
fe

r d
riv

in
g 

fo
rc

e 
 

C
*-

C
bu

lk
 (m

m
ol

./m
3 )



31

0

2

4

6

8

10

12

14

9.5

10

10.5

11

11.5

0 2 4 6 8 10 12 14 16 18

To
ta

l a
lk

al
in

ity
 (m

M
) 

pH

Time (d)

pH
Total alkalinity

(b)



32

Detailed calculations for mass transfer rates of DIC (shown as ΔDIC).

Set 1a

Day 1

Time (d) pH Temperature 
(º C) 

Ionic 
strenght 

(I)
pK1 pK2

TA 
(mM)

HCO3
-

(mM)
CO3

2-

(mM)
DIC 

(mM)
ΔDIC 
(mM)

ΔDIC    
(mmol.·m-2·d-1)c

ΔDIC  
(g-C·m-2·d-1)

1.21 10.2 17.8

0.024

6.33 10.15

8.1

2.4 2.7 5.2 0.23 688.1 8.31.25 10.1 17.3 6.33 10.15 2.9 2.5 5.4

Day 4 4.33 10.2 24.0 6.29 10.09 2.2 2.9 5.0 0.22 635.3 7.64.38 10.1 23.8 6.29 10.09 2.6 2.7 5.3

Day 5 5.25 10.2 21.8 6.30 10.11 2.3 2.8 5.1 0.22 641.1 7.75.29 10.1 21.7 6.30 10.11 2.7 2.6 5.3

Day 6 6.29 10.2 20.9 6.31 10.12 2.3 2.8 5.1 0.22 657.6 7.96.33 10.1 20.6 6.31 10.12 2.7 2.6 5.3

Day 10 10.38 10.2 16.6 6.34 10.16 2.5 2.7 5.2 0.23 681.7 8.210.42 10.1 16.3 6.34 10.16 2.9 2.5 5.4

Day 11 11.38 10.2 15.1 6.35 10.18 2.5 2.7 5.2 0.24 690.1 8.311.42 10.1 14.8 6.35 10.18 3.0 2.5 5.5

Day 15 15.25 10.2 23.2 6.29 10.09 2.2 2.8 5.1 0.22 645.0 7.715.29 10.1 22.9 6.30 10.10 2.6 2.6 5.3

Set 2b

Day 1 0.99 10.2 17.8

0.020

6.33 10.16

4.5

1.4 1.5 2.9 0.14 548.3 6.61.03 10.1 17.5 6.34 10.17 1.6 1.4 3.0

Day 2 1.97 10.2 18.9 6.33 10.15 1.3 1.5 2.8 0.14 617.0 7.42.00 10.1 18.5 6.33 10.16 1.6 1.4 3.0

Day 3 2.95 10.2 19.7 6.32 10.14 1.3 1.5 2.8 0.14 618.3 7.42.98 10.1 19.2 6.32 10.15 1.6 1.4 3.0

Day 4 3.97 10.2 19.2 6.32 10.15 1.3 1.5 2.8 0.14 615.5 7.43.99 10.1 18.8 6.33 10.15 1.6 1.4 3.0

Day 5 4.77 10.2 20.2 6.32 10.14 1.3 1.5 2.8 0.14 547.4 6.64.80 10.1 19.7 6.32 10.14 1.6 1.4 3.0

Day 6 5.77 10.2 20.2 6.32 10.14 1.3 1.5 2.8 0.14 492.7 5.95.80 10.1 19.7 6.32 10.14 1.6 1.4 3.0

Day 7 6.72 10.2 20.8 6.31 10.13 1.3 1.5 2.8 0.14 558.4 6.76.75 10.1 20.0 6.32 10.14 1.5 1.4 3.0
a Data obtained from the experiments carried out during December 2013
b Data obtained from the experiments carried out during September 2013
c Cultivations were carried out in small raceway ponds (surface area = 0.18 m2) and the rate of increase in DIC was calculated using this surface area.



Mass transfer coefficients calculated 
using the mass transfer rates
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ΔDIC     
(mmol.·m-2·d-

1)

Mass transfer driving force
KL·E 

(m·h-1)
KL

(m·h-1)CO2
*

(aq)

(mmol.·m-3)
CO2

bulk
(aq)

(mmol.·m-3)
CO2

*
(aq) - CO2

bulk

(aq) (mmol.·m-3) 
688.1

13.2

0.23 12.97 2.21 0.06
635.3 0.18 13.02 2.03 0.05
641.1 0.20 13.00 2.05 0.05
657.6 0.21 12.99 2.11 0.05
681.7 0.24 12.96 2.19 0.06
690.1 0.26 12.94 2.22 0.06
645.0 0.19 13.01 2.07 0.05
548.3 0.20 13.00 1.76 0.04
617.0 0.19 13.01 1.98 0.05
618.3 0.19 13.01 1.98 0.05
615.5 0.19 13.01 1.97 0.05
547.4 0.19 13.01 1.75 0.04
492.7 0.19 13.01 1.58 0.04
558.4 0.18 13.02 1.79 0.04



Results – Micro nutrient utilization

 Biomass and lipid 
productivities are improved 
(up to 33%) in low-Ca (1.5 
mg/L and low-Mg (0.5mg/L) 
media

 Standard media have 10×
higher Ca and Mg 
concentrations0
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TSS Sampling 1
5mL; 9.7mg

Feed
1.1g/L 

560mg biomass
500mL

Stage 1

260mL media

470mg
235mL 
2.0g/L

348mg
26mL
13.5g/L 

365mg
50mL
7.3g/L

442mg
114mL
3.9g/L

TSS Sampling 4
2mL; 26.9mg

TSS Sampling 3
5mL; 36.5mg

TSS Sampling 2
5mL; 19.4mg

Recovered 
concentrate 
95 g/L 
234mg biomass
2.5mL

Hydrogel and  
media recovery

9.7mL media59mL media116mL media 22mL media

Heat

Recovered aqueous phase
477mL media (measured)

112 mg biomass (estimated 
from overall mass balance)

Stage 2 Stage 3 Stage 4 Stage 5

Deswelled gel 
13g

Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat Hydrogel and 
media recovery

Heat

Deswelled gel 
6g

Deswelled gel 
3g

Deswelled gel 
1g

Deswelled gel 
0.5g

TSS sampling
214mg biomass 

4.9mL media

Stage 6

Hydrogel and 
media recovery

Heat

Deswelled gel 
0.25g

4.8mL media

Stage 7

Hydrogel and 
media recovery

Heat

Deswelled gel 
0.25g

1.1mL media

Stage 8

Hydrogel and 
media recovery

Deswelled gel 
0.075g

TSS Sampling 4
1mL; 21.6mg

TSS Sampling 4
1mL; 32.6mg

TSS Sampling 4
1mL; 67.2mg

331mg
15.3mL
21.6g/L

306mg
9.4mL
32.6g/L

241mg
3.6mL
66.8g/L

Stage-wise concentration of microalgae cultures 
using PNIPAAm hydrogels

 Concentration was increased from 1g/L to 100 g/L 
BUT 2h duration per stage (lengthy process time)

◦ Slow swelling of PNIPAAm

◦ Several stages due to the low mass of absorbent 
gels used in each stage



Photosynthetic efficiencies of  
feed and concentrated cultures

Viability of harvested biomass and unrecovered cells
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Design of a harvesting device
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Responses to Previous Reviewers’ 
Comments
 Reviewers suggested that we focus on hydrogel  

harvesting task and we have improved the method 
significantly since the previous review

 Reviewers suggested we pivot towards scale-up of 
cultivation. Since the last peer review we have focused on 
outdoor cultivation and scale-up.

Note:  This slide is for the use of the Peer Reviewers only – it is not to 
be presented as part of your oral presentation.  These Additional Slides 
will be included in the copy of your presentation that will be made 
available to the Reviewers.
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