U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Direct Photosynthetic Production of Biodiesel by Growth-Decoupled Cyanobacteria (Bioenergy Technology Incubator 2 Project)

> March 9, 2017 Advanced Algal Systems

Wim Vermaas Arizona State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goals

- Directly produce excreted, 'drop in' ready biofuel (ethyl laurate) by cyanobacteria using CO₂, water, and light as the main inputs
- Uncouple growth of the culture (biomass production) from production of the biofuel to increase the ethyl laurate yield
- Further increase ethyl laurate production by (1) boosting metabolic flux through the fatty acid biosynthesis pathway and (2) reducing the production of exopolysaccharides

Outcome:

- Successful production and excretion of ethyl laurate
- Good yields (current laurate production is at about 20 mg/L/day)
 Relevance:
- Direct production of excreted biofuel from CO₂, water and light
- Scalable with limited processing needs

Quad Chart Overview

Timeline

- Start: October 1, 2016
- End: September 30, 2018
- ~18% Complete

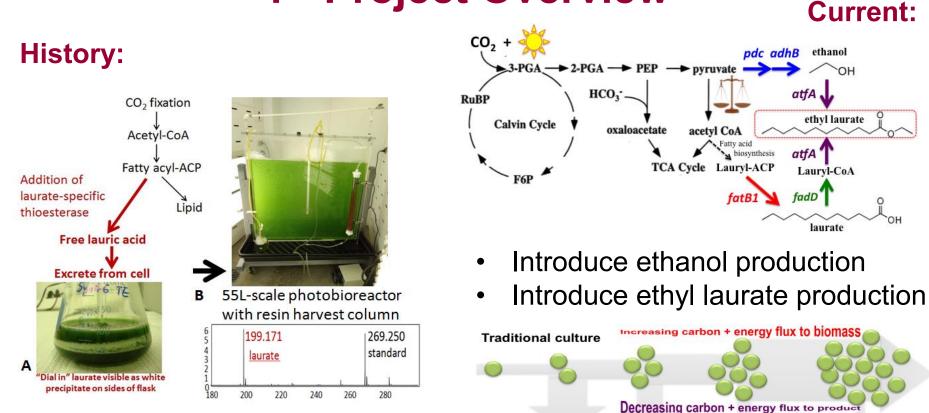
Budget

	Total Costs FY 12 –FY 14	FY 15 Costs	FY 16 Costs	Total Planned Funding (FY 17-Project End Date)
DOE Funded	0	0	0	1,818,000
Project Cost Share (Comp.)*	0	0	0	252,288

Barriers

- Generating ethyl laurate from coproduced ethanol and laurate
- Scale-up
- Being cost-effective and contribute to sustainable, reliable, and affordable algae-based advanced biofuels

On the Plus Side


 Potentially disruptive: Direct biofuel production at high yields

Partner

 Algenol: Providing ethanologenic plasmids

1 - Project Overview

 Previous ARPA-E project: Generate a laurate-producing strain

Use CRISPR-dCas9 or sRNA 4

Growth decoupled culture

to induce growth arrest

Decoupling induced

Sustained carbon + energy flux to product

2 – Approach (Management)

Team:

- Wim Vermaas (PI; ASU, School of Life Sciences)
 - Fatty acid production improvement; ethyl laurate; exopolysaccharide deletion
- David Nielsen (Co-PI; ASU, School of Engineering of Materials, Transport and Energy)
 - Ethyl laurate; growth arrest; metabolic engineering
- Xuan Wang (Co-PI; ASU, School of Life Sciences)
 - Molecular biology; overexpression of fatty acid biosynthesis pathway genes; ethyl laurate balance
- Rob Stirling (ASU School of Sustainable Engineering and the Built Environment)
 - Ethyl laurate TEA once we have production data
- Three postdocs, four graduate students, one laboratory staff member, and a 50%-time project coordinator
- Biweekly meetings of the team

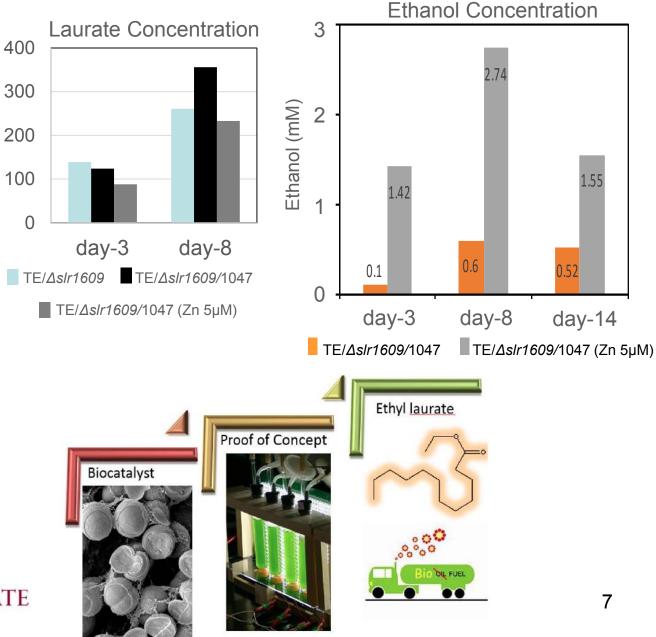
2 – Approach (Technical)

Tasks:

- 1. Increase laurate production (more laurate means more ethyl laurate)
 - Metabolic engineering (fatty acid biosynthesis regulation, overexpression)
- 2. Engineer ethyl laurate biosynthesis (Go/No-Go in October)
 - Introduce ethanol production; convert laurate to lauryl-CoA; convert lauryl-CoA and ethanol to ethyl laurate
- 3. Decouple growth and ethyl laurate production; grow at 55-L scale
 - Readily inducible (e.g., Ni²⁺-inducible) growth arrest (CRISPR-dCas9)
- 4. Reduce exopolysaccharide production
 - Delete up to three genes involved in exopolysaccharide production
- 5. Techno-economic analysis on ethyl laurate production in cyanobacteria

Potential Challenges:

- 1. Productivity: How much can be made and how well can ethanol and laurate production stoichiometries be balanced in varying conditions?
- 2. Stability: How well is ethyl laurate excreted from cells and how stable is it in the medium?



3 – Technical Accomplishments/Progress/Results

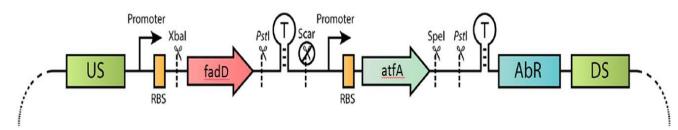
This is considered to be a new project (started October 1, 2016) but there already are some results to share: A strain producing both laurate and ethanol, a prerequisite for ethyl laurate production. Also, the three-month milestone has been reached.

-aurate (µM)



4 – Relevance

- Breakthrough concept: Direct production of excreted biofuel from CO₂, water and light
 - Ethyl laurate is nearly immiscible with H₂O and is stable, thus opening the perspective of open-pond cultures (after GMO approval)
 - Ethyl laurate is an immediate biodiesel equivalent
 - Reduced processing costs
 - No need for biomass extraction
 - Less biomass provides more fixed carbon for ethyl laurate
- Scalable with limited processing needs
 - Helps reaching the 5 bil gal/yr advanced algae biofuel by 2030
 - Helps reaching the 2022 \$3/gasoline gal equivalent goal
- Biomass remains unaltered, yields valuable co-products, and may be used as feedstock
- Potential to provide a very positive techno-economic analysis

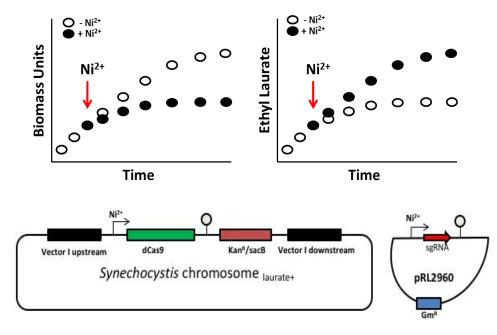

Task 1:

- Increase laurate production:
 - Overexpress acetyl-CoA carboxylase (ACC) and fatty acid biosynthesis genes
 - Overexpress acyl carrier protein (ACP)
 - Reduce palmitoyl-ACP levels, a feedback inhibitor
 - Delete *glnB*, a negative regulator of ACC

Develop a rapid high-throughput assay to detect laurate

Task 2:

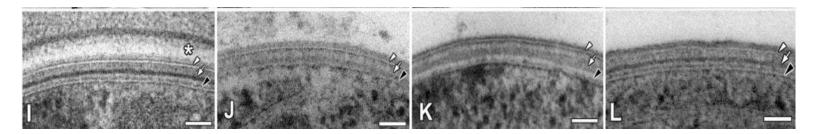
- Engineer ethyl laurate biosynthesis:
 - Introduce genes to enable ethyl laurate formation from laurate and ethanol
 - Demonstrate de novo ethyl laurate production
 - Control the carbon flux distribution from pyruvate, the last common metabolic intermediate in the ethanol and laurate pathways, to optimize ethyl laurate production
- Go/No-Go decision point (October 2017): Demonstrate ethyl laurate production



Task 3:

Decouple *Synechocystis* growth and ethyl laurate production:

- Inhibit cell growth (but not metabolism) within about 6 h when "all" light is absorbed by the culture (9-month milestone)
- Integrate growth decoupling with ethyl laurate production
- Demonstrate growth in larger-scale photobioreactors in year 2



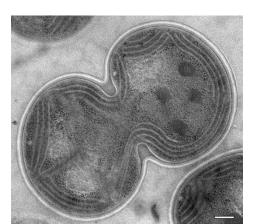
Task 4:

Reduce exopolysaccharide production:

- Delete three genes known to be involved in exopolysaccharide production or transport; together they should reduce exopolysaccharides by about 90%
- Combine this trait with growth-arrest-inducible, ethyl laurate producing strain
- Less exopolysaccharides means:
 - Less sugar sources for opportunistic heterotrophic contaminants
 - More fixed carbon is available for ethyl laurate production

Task 5:

Perform a techno-economic analysis on ethyl laurate production


- Will be performed toward the end of the project when there are sufficient data on ethyl laurate productivity potential
- The last project milestone (month 24) is a techno-economic model of ethyl laurate production in cyanobacteria

Summary

- Cyanobacterial one-stop-shop for producing excreted drop-in biodiesel from CO₂, water and light
- Combined production of laurate and ethanol by the same cell already has been demonstrated
- Laurate production will be maximized, and laurate and ethanol stoichiometries will be calibrated to optimize ethyl laurate production
- Combination with inducible growth arrest and reduced exopolysaccharides will maximize ethyl laurate production
- The project has breakthrough potential because of its immediate production of a biodiesel alternative that will separate from the aqueous phase and float, thus minimizing processing

Additional Slides

Responses to Previous Reviewers' Comments

- This is a new project (started in October 2016) that has not been reviewed in a previous BETO meeting
- There have been no Go/No-Go decision points in the project yet

Publications, Patents, Presentations, Awards, and Commercialization

 This is a new project that started in October 2016, and no publications, patents, presentations, awards and commercialization is available yet